
Remote Access to Virtual Machines in MiG

Bachelor Thesis June 2009

Simon Andreas Frimann Lund

Department of Computer Science, University of Copenhagen.

Advisor: Brian Vinter

1

2

Abstract

This thesis presents a design and implementation of a solution model for providing remote access to

virtual machines in MiG. The strict requirements for expanding MiG is covered in detail and summarized

into a requirement speci�cation. The design and implementation of the solution model is based on the

requirement speci�cation and ful�lls every requirement. The process of design and implementation is

covered and documents other solution models that may be used in less strict environments.

The key requirements for the solution are the demand for anonymization, no use of MiG speci�c

software and �rewall compliance. The solution model is based on expanding MiG with a fault tolerant,

anonymizing, �rewall compliant, packet inspecting proxy and proxy agent. The RFB protocol has been

used for providing remote access and any RFB compliant client can gain remote access to virtual machines

in MiG.

Solutions are also provided for removing dependencies in the original work on virtual machines in

MiG. The utilization of virtual machines no longer rely on: a MiG speci�c customization of VirtualBox,

the slax Linux distribution, and the availability of VirtualBox on the users machine.

Usability enhancements of the web-interface has been implemented and the use of remote access has

been implemented with complete transparency for the user.

Contents

1 Introduction 5

1.1 Problem De�nition . 5

1.2 Related Work . 5

1.3 Delimitation . 6

1.4 Source and Documentation . 6

1.5 Terminology . 6

2 Analysis and Requirements Speci�cation 7

2.1 Minimum Intrusion Grid . 7

2.1.1 Rules . 8

2.1.2 Users . 8

2.1.3 MiG Servers . 9

2.1.4 Resources . 9

2.1.5 Virtual Machines . 10

2.1.6 Summary . 10

2.2 Protocols and Software . 11

2.2.1 Protocol . 11

2.2.2 Embedding Remote Access . 12

2.2.3 Software Comparison . 12

2.2.4 Summary . 14

2.3 Architecture . 15

2.3.1 Summary . 16

2.4 Requirements Speci�cation . 17

3 Solution Model 18

3.1 Implementation Overview . 19

3.2 Summary . 19

4 Design and Implementation 20

4.1 Initial Research and Experiments . 20

4.1.1 RFB vs VNC . 20

4.1.2 Embedding RFB into VirtualBox . 21

4.1.3 Proxying . 22

4.1.4 Existing Proxies . 25

4.1.5 Sockets and Asynchrony . 26

4.1.6 Summary . 27

4.2 First Iteration Proxy Design . 28

4.2.1 Proxy Awareness by Packet Inspection . 29

4.2.2 Anonymization . 30

4.2.3 Implementation . 30

4.2.4 Issues . 30

4.3 Second Iteration Proxy Design . 32

4.3.1 Proxy Agent and Protocol . 32

4.3.2 Proxy Awareness Revisited . 34

4.4 Third Iteration Proxy Design . 36

4.4.1 Firewall Compliance . 36

4.4.2 Sockets and Asynchrony Revisited . 37

4.4.3 Client Software . 37

4.4.4 Summary . 38

4.5 Virtual Machines in MiG . 40

4.5.1 Hypervisor Dependency and Migration Issues . 40

3

4

4.5.2 Transfer Times and Virtual Machine Management . 41

4.5.3 Operating System Dependency / Introducing Virtual Machine Builders 42

4.6 Interface . 43

4.6.1 Usability Enhancements . 43

4.6.2 Remote Access . 44

4.6.3 Request Virtual Machine . 46

5 Test 47

5.1 Observations . 47

6 Future Work 48

7 Conclusion 49

References 50

A Appendix 56

A.1 Changelogs . 56

A.2 Proxy and Proxy Agent Code-base . 56

A.3 HTTP Encapsulation of RFB Messages . 57

A.4 HTTP Connect Method Encapsulation . 57

A.5 MiG Inter-proxy Protocol (MiP) Speci�cation . 58

A.6 Integrating python-vm-builder with MIG . 59

A.7 Job Encapsulation of Virtual Machine Migration . 59

A.7.1 Job Description with System Disk on MiG server . 59

A.7.2 Job Description with System Disk on Resource . 60

A.7.3 Run-time Wrapper . 61

A.8 Building Customized VirtualBox . 61

A.9 Adding VNC to VirtualBox . 64

A.9.1 MiGFramebu�er.h . 64

A.9.2 MiGFramebu�er.cpp . 68

1 Introduction 5

1 Introduction

The goal of the Grid[17] and grid computing[17] is to obtain a system where computing resources

can be accessed with the same simplicity as we get power from the power grid. Many models to

creating the Grid has been developed since what is widely accepted as the �rst mention of grid

computing by Ian Foster in 1998.

One such model for grid computing is the Minimum Intrusion Grid (MiG)[7] started in 2005

by Brian Vinter which proposes a model that addresses issues in other approaches to grid com-

puting ; allowing slimmer installations on the user and resource side by providing a fatter grid

infrastructure.

The MiG model strive to remove fat not only from the installations on the users machine, but

also by minimizing requirements on the human users themselves. This has so far been achieved

by providing a minimum resource speci�cation language[8] which is simpler and easier to learn

in relation to the Globus resource job description language[19].

Learning a language (although simpler) is however still an intrusive operation for the human

user, therefore Tomas Grothe Christensen (TGC) sought to ease the use of grid computing by

giving the user access to a familiar desktop environment[71] installed in a virtual machine on the

users computer and migrating the virtual machine out into the grid when he or she needed the

computational resources provided by the grid.

In [11] TGC describes how he has implemented this in MiG with the virtualization software

VirtualBox[33], when the virtual machine is migrated to MiG the user is disconnected from the

desktop environment.

What this thesis proposes is a way of obtaining remote access to the desktop environment while

the virtual machine is executing in MiG without violating the MiG rules[6].

1.1 Problem De�nition

This thesis seeks to explore the possibilities for implementing remote access to the desktop en-

vironment when the virtual machine is running in MiG by answering the questions: What is

required to provide remote access to virtual machines in MiG? Is it possible to meet the require-

ments without violating the MiG rules and design criteria?

1.2 Related Work

Remote access has its roots from text terminals, graphical terminals and to what is today known

a thin clients, with the advent of personal computers the trend shifted towards having the needed

computing power locally. This trend in computing seems to continuously shift back and forth.

Virtual Network Computing (VNC)[58] is an ultra thin client system based on the Remote Frame-

Bu�er Protocol (RFB)[65]. VNC is because of the simplicity the RFB protocol totally platform

1 Introduction 6

independent and can be implemented in hardware in thin-clients or as a software solution. A

similar approach to remote access, with more features, but with high dependency on the operating

system are the Microsoft Terminal Services based on the Remote Desktop Protocol (RDP)[23]

and Citrix XenAPP based on the ICA protocol. None of these systems however are integrated

with grid computing.

Work has been made in virtual machine grid computing[63] to provide a layer two network tool

that connects a virtual machine based on VMWare to the local network that the user resides on.

The work in this paper provides a method to provide remote access without installing a network

tool on the user machine and without dependency on the hypervisor chosen for virtualization.

Remote access to desktop environments is thus not a new need, the desktop environment is a

very popular and widespread graphical user interface. This was also why TGC chose to use the

desktop environment as a way to ease the utilization of MiG. The new problem is to close the

gap between remote access, desktop environments and grid computing.

The problem de�nition is related to the latest buzzword cloud computing[69] one key aspect to

cloud computing vs grid computing is that it focuses on delivering services to its users rather

than general purpose computing resources. Three groups of services in cloud terminology are:

Platforms as a Service (PaaS), Infrastructure as a Service (IaaS) and Software as a service (SaaS).

The work in this thesis can in terms of cloud computing be described as Desktop as a Service

(DaaS).

1.3 Delimitation

The interaction with the desktop environment is limited to being screen output, keyboard and

mouse input and leaving features such as embedded �le transfer, high de�nition graphics and

other features for future work.

This thesis provides remote access to virtual machines as described in [11], a delimitation is

needed here since other work in MiG uses virtual machines for public resource computing.

1.4 Source and Documentation

This thesis and all material related to it is available on-line on the MiG google code project site:

http://code.google.com/p/migrid/source/browse/#svn/branches/vm-job-vnc

1.5 Terminology

In MiG the term fat is used as a measurement to describe where grid-enabling technology is

added. Often distinguished between adding fat to resources, users or the MiG server.

2 Analysis and Requirements Speci�cation 7

2 Analysis and Requirements Speci�cation

This goal of this project is to answer the questions:

1. What is required to provide remote access to virtual machines in MiG?

2. Is it possible to meet the requirements without violating the MiG rules and design criteria?

These questions will be answered in an analysis of the MiG rules and design criteria, an analysis

of the available protocols and software stacks for providing remote access and an analysis of

the architectural and infrastructural requirements. Each subject will be discussed in its own

subsection and a summary of the requirements will be individually provided in each subsection.

This current section is ended with a requirements speci�cation summarizing the individual re-

quirements of each subject. And thus an answer to the �rst question is provided in the form of

a list of requirements.

An overview of the �nal solution model in relation to the requirement speci�cation is provided

in Section 3 with detailed design considerations and implementation issues described in Section

4. A short answer to question two is thus provided in Section 3 and a long detailed answer is

given in Section 4.

Before continuing into coverage of requirements then it must be made clear what is meant by

remote access. Remote access has historically meant di�erent things, a software product with the

name RemoteAccess has existed, multiple protocols using the name remote access protocol (RAP)

exists. In this project the term remote access will be used to describe a means for providing

remote access to a desktop environment. The remote access must enable a user of MiG to:

• See the graphical desktop environment.

• Interact with the desktop environment and applications available in the virtual machine

by using mouse and keyboard.

The motivation in the original work for providing remote access is that visual job-status can be

provided. Remote access however also provide all new ways of utilizing the computing resources

available via MiG. The interaction provides the possibility for users to continuously monitor

a simulation and change parameters as needed. Remote access will provide a means for using

MiG as middleware for Virtual Desktop Computing / Desktop Virtualization. The motivation for

providing remote access is high and the following section starts the uncovering of the requirements

for doing so.

2.1 Minimum Intrusion Grid

I have brie�y commented on what the goal of grid computing is in general and how MiG is

di�erent model. From an abstract top down view MiG is the grid glue that connects the en-

tities of users and resources an abstract illustration of this is given in Figure 1 on page 8.

2 Analysis and Requirements Speci�cation 8

Fig. 1: The simple MiG model [8].

The MiG server is placed somewhere on the

Internet, users and resources do not commu-

nicate with each other but use MiG as the mid-

dleware.

I will describe the technical details of MiG that

has an impact on this project and the rules

and goals of MiG that direct the design and

implementation. Further details are available

on the MiG websites[34][35].

2.1.1 Rules

• Nothing produced by MiG can be required to be installed on either the resource or client

end

• Everything within MiG must be implemented in Python unless another language is abso-

lutely required

• Any design and implementation decision must optimize towards transparency for the users

• Anything that is not right must be thrown away

These are the rules of MiG as described in MiG rules [6], in addition speci�c design criteria must

be met to ensure that MiG is and continue to be: non-intrusive, scalable, autonomous, anony-

mous, fault tolerant, �rewall compliant, providing strong scheduling and cooperative support.

2.1.2 Users

In MiG a user requests access to computing resources by formulating jobs in the mRSL language,

the following commands exist for job manipulation: job submission, job status of one or more

jobs and job cancellation. Having access to computing resource is quite useful, but it is usually a

lot more useful when the jobs compute something based on user given input and produces some

output. MiG caters for this need providing access to �les in the methodology of a home directory

that is well known to UNIX/Linux users in its layout.

The commands for manipulating �les in MiG are: download and upload �les to and from MiG and

shell-like commands such as cat/head/tail/wc/stat/touch/truncate/rm and rmdir. Additionally

a command to show on-line documentation exist. I will refer to this set of commands/interactions

as core interaction.

The core interaction is provided to users via di�erent interfaces; web-interface, bash scripts,

python scripts, XML-RPC[72], c++ library and in current development JSON[24]. The �rst

three are focused on human interaction and the three others are used for machine interaction

with MiG. The interfaces serve di�erent purposes but they share the common feature that all

interaction is only allowed when the user possesses and presents a valid x.509 certi�cate.

2 Analysis and Requirements Speci�cation 9

MiG distinguishes itself from other Grid systems by providing user experience enhancing tools

for the core interaction such as the scripts/XML-RPC/c++ library and JSON but these are

enhancements to the interaction and not required for the user. Thus the only requirement on

users is to learn the mRSL language, request an x.509 from MiG, a HTTPS capable browser and

Internet access.

In this project I continue the work of TGC who has created a tool for high-level interaction

with MiG. The high-level interaction is based on interaction with a desktop environment, the

desktop environment is running inside a virtual machine based on the virtualization software

VirtualBox. The frontend of VirtualBox has been expanded to integrate the core interaction so

the user does not need to. Instead they install a MiG speci�c customization of VirtualBox on

their machine and interact with their applications and data inside the desktop environment of the

virtual machine. When needing the computational resources of MiG they instruct VirtualBox

by clicking a button to deploy the virtual machine out into MiG. VirtualBox accomplishes this

by utilizing the core interaction wrapped in a c++ library.

2.1.3 MiG Servers

MiG is currently based on the Apache webserver, an SSH daemon and the actual application

code written in python and some parts in Java (One-Click). MiG uses Debian stable as the

operating system platform and thus provides the mentioned software in the version available

in Debian stable. The MiG server handles requests from the users via core interaction and

schedules jobs to be executed on the resources available to the user. MiG stores data for the

user and serves the data for resources when they need it in the job execution process. Jobs are

given unique identi�ers, the identi�ers are private meaning that only the owner of a job knows

the job-identi�er.

Resources are informed of the job-identi�er but are unaware of the mapping between user and

job identi�er only the MiG server and the owner is aware of the mapping.

2.1.4 Resources

Four di�erent types of computing resources are available in MiG, in the Getting Started Guide[3]

they are called Full scale, One-Click, Screen-Saver-Science (SSS) and one not described in [3]

but in [32] is the PS3 live-CD.
HTTPS out SSH out SSH in

Full scale + + +

Sandbox + + -

Tab. 1: Firewall resource requirements.

The computational power and expected availabil-

ity vary greatly, the Full scale are dedicated ma-

chines, with the sole purpose in life being to de-

liver computing resources to MiG, their availabil-

ity can be expected to be high, other resources such as the SSS are more limited since they bring

computation to MiG only when the machine they are sandboxed in is not being used, and can

at any time be aborted.

2 Analysis and Requirements Speci�cation 10

The availability is one distinguishing characteristic of the resource types, another is availability

of network access, the Full Scale o�er both SSH and HTTPS in and out where the rest only o�er

outgoing tra�c as illustrated in �gure 1.

The VirtualBox virtual machines run on Full Scale resources because of the deployment times

in migration from user machine to resource, then the full scale resources are the types which are

best �tted for the purpose.

Communication with full scale resources utilize SSH and HTTPS. Even if an organization has

multiple resources behind one �rewall then only only one port needs to be opened in the �rewall.

This is because resources are assigned roles of frontend node or execution node, or both, as

speci�ed in the job �ow description [5].

The purpose of a frontend node is to communicate with MiG and deliver jobs to execution nodes.

If only one resource exist in an organization then it acts as both frontend and backend node, an

organization with multiple resources con�gures one resource acting as the frontend and forwards

the SSH port to it. The remaining resources are con�gured as execution nodes and do not

communicate with MiG but with the frontend node.

2.1.5 Virtual Machines

Fig. 2: Organization of layers.

VirtualBox is a user space application using a kernel-

module to map into the kernel of the host operating

system. For reference a �gure of the layers in relation

to the desktop environment in the virtual machine is

provided in Figure 2 on page 10. As described in sec-

tion 2.1.2 core interaction has been integrated into Vir-

tualBox this means that as long as the user has a valid

certi�cate she only needs VirtualBox to use MiG. It is

also the only way for the user to use Virtual Machines

thus it is a requirement for the users to install VirtualBox to get the facilities of a desktop

environment.

It is worth noting that the virtual machine is con�gured with networking enabled via the hosts

(user or resource machine) interface but ingoing tra�c is denied in the operating system, this

is done to restrict network access to the virtual machine from the resource owner and from the

network that the resource is installed in. However no restrictions are applied to outgoing network

tra�c in the virtual machine or operating system, thus Internet access can be expected to be

available to the same extent that Internet access is available to the resource.

2.1.6 Summary

MiG enforces strong rules and design criteria that must be strictly followed, the present project

is �rmly focused on maintained anonymity for both users and resources, no installation of MiG

2 Analysis and Requirements Speci�cation 11

speci�c software, �rewall compliance and transparency for users. Remote access must thus be

provided by transport via HTTPS or SSH in a way that does not require any software installed

neither on the user machine or resource.

2.2 Protocols and Software

The MiG rules state that nothing produced by MiG can be required to be installed on neither

user nor resource end. Thus an existing protocol and software suite should be chosen instead of

developing a MiG speci�c remote access protocol and software stack. This section seeks to �nd

an existing protocol and software suite ful�lling the following requirements:

1. Software must provide visual output of the desktop environment.

2. Software must accept keyboard and mouse input.

3. Software license should be compatible with GPL.

4. Protocol speci�cation should be documented and available.

Requirements one and two are directly linked to the goals of the project, requirement three is

stated to ensure that the chosen software can be be distributed with MIG.

The alternative to requirement four is to extract protocol information from the source code and

reverse engineer network packages on live remote access sessions. This alternative is feasible but

highly time consuming so choosing it must be based on signi�cant gains in the other components.

2.2.1 Protocol

Below is a list of proven remote access protocols.

• RFB - Remote frame-bu�er, speci�cation available.

• RDP - Remote desktop protocol, speci�cation available.

• X11 - X window system display protocol, speci�cation available.

• NX - NoMachine NX, speci�cation unknown.

• ICA - Independent computing architecture, speci�cation unknown.

• AIP - Adaptive Internet Protocol, speci�cation unknown.

Of the listed protocols RFB, RDP and X11 are the most interesting since they are properly

documented, X11 however is very tightly linked with the X display server and it might prove

hard to �nd software stacks implementing the protocol that are not tightly coupled with X

display server and thus require the use of X. RDP has a similar constraint, it is developed for the

Microsoft Windows operating system and the protocol speci�cation is comprised of 9 documents

2 Analysis and Requirements Speci�cation 12

specifying various Windows speci�c features, the base speci�cation is about 348 pages, RDP is

well documented but also a very complex protocol. The RFB protocol however is completely

decoupled from the operating system and has no operating system constrains in the speci�cation.

2.2.2 Embedding Remote Access

The MiG Rules state that no software should be installed on neither client nor resource end.

If no software is allowed to be installed on the client then the user must either already have

the software installed or alternatively a Java client that can be run from the browser could be

used. Most version of Windows comes with an RDP compatible client, most popular Linux

distributions comes with VNC clients. However in various environments such as Internet cafes

and libraries access to the software is often restricted and only access to games/book database

and a web browser is allowed. The vision of grid computing is also about providing mobility by

providing access from all types of heterogeneous environments only providing a browser and the

user bringing her certi�cate.

The use of browser based client via Java thus seem appealing, since it allows access to computing

resources in these restricted environments. But a Java enabled browser could be regarded as being

intrusive, they are however widespread and the One-Click in MiG already utilize Java and it can

therefore be regarded as an acceptable intrusion.

An entirely di�erent approach would be to use comet[13] or web-sockets[68], this however would

require that the remote access client must be implemented from scratch in ECMAScript/-

JavaScript, this approach would not pose any restrictions on the user and no software would

need to be installed. But it would violate my delimination of not implementing the software

stacks from scratch. The technology is however very interesting and might prove very useful to

MiG in other projects.

This still leaves the issue of installing software on the resource end, this can however be avoided

by installing the software inside the virtual machine and not on the resource. Because of this a

software approach to providing remote access is feasible.

Remote access on the server side can also be provided by embedding it into VirtualBox. The

commercial version has integrated RDP support but the open source edition that MIG depends

on does not. In section 4.1.2 an evaluation of re-embedding remote access in VirtualBox is

provided.

2.2.3 Software Comparison

In the comparison chart[70] 48 di�erent software stacks for remote desktop are compared, 32 of

them being proprietary an hereby ill-�tted for distribution with MiG. Client and server software

need not be provided from the same software stack as long as a client and server use the same

protocol and Java client exists. Six such clients are available (jrdesktop (proprietary), rdesk-

top(RDP), RealVNC Free(RFB), TightVNC(RFB), UltraVNC(RFB) and x11vnc(RFB)). The

2 Analysis and Requirements Speci�cation 13

choice of server software must thus use either RDP, RFB or the proprietary jrdesktop protocol.

There are not any server software that runs on all platforms, nor is this a direct requirement. But

sound choices for server software would be FreeNX, iTALC, jrdesktop, RealVNC Free, TightVNC,

UltraVNC, xrdp or x11vnc.

jrdesktop however is the only software stack using its own proprietary protocol. Using jrdesktop

would mean that MiG would rely heavily on the continued development of the jrdesktop project

I therefore do not see it well-�tted for this project.

Fig. 3: FreeNX Architecture

FreeNX is a very interesting project they claim techni-

cal superiority over all existing remote access solutions,

they do this by accelerating and compressing X11 tra�c

via nxproxies (see Figure 3 on page 13) support is also

provided for translating RFB and RDP based servers

into FreeNX/X11 protocol. On the client side an X11

client or commercial NoMachine client must be used.

However for this project the accelerating architecture cannot be used since a FreeNX proxy can-

not be installed on the users computer, without the nxproxy locally available to the user then

none of the advantages of the FreeNX system can be used.

This leaves the best �tted software choices as listed in Table 2 on page 13.

Client Server Java Client FreeBSD Linux MacOSX Windows

RDP rdesktop 1 0 1 1 1 1 1
xrdp 0 1 1 1 1 0 0

RFB iTALC 1 1 0 0 1 0 1
RealVNC 1 1 1 1 1 0 1
TightVNC 1 1 1 1 1 0 1
UltraVNC 1 1 1 0 0 0 1
x11vnc 0 1 1 1 1 1 0

Tab. 2: Best �tted remote access software.

In the case of RFB the software stacks are lacking a standardized encryption scheme for communi-

cation. This is due to the fact that the RFB speci�cation[65] only specify simple three-way hand-

shake, more advanced types of authentication and encryption of tra�c is left non-standardized,

no common ground for these task are available therefore other means for providing such features

must be found.

An interesting software stack is x11vnc. The interesting part is that the development team has

organized the development around creating a portable c library for all of the VNC functionality.

The RFB protocol is highly portable and with the libvncserver a highly portable c library is

available.

2 Analysis and Requirements Speci�cation 14

2.2.4 Summary

Table 2 on page 13 shows that the best supported protocol is RFB, RDP only has one server

and one client available. The RFB protocol is a good choice; it is simple, well documented, well

supported by Java clients and server software is available for all platforms.

2 Analysis and Requirements Speci�cation 15

2.3 Architecture

Architectural requirements for supporting anonymous remote access to virtual machines based

on the RFB protocol must be de�ned.

RFB is an application level protocol implemented on top of TCP/IP in the traditional clien-

t/server architecture. When access to the server is needed the user enters the IP address and

port in the client and connects to the server as illustrated in Figure 4a on page 15. This method

of connection initiation is the regular way of establishing connections in a client/server archi-

tecture. It is quite natural that users initiate connections since the job of a server is to service

users, the server normally does not know who to service at a given time.

(a) Regular connect.

(b) Reverse connect.

(c) Look-up service.

Fig. 4: Initiation methods.

Some servers however also implement a reverse initi-

ation method as illustrated in Figure 4b on page 15

where the server initiates the connection to the user.

The use of reverse connections are not that widespread

in the client/server architecture but it is useful in en-

vironments where the server for various reasons are not

allowed incoming tra�c.

Either way the initiating party must know the address

and port of the other end, in MiG neither end-point

knows the address of the other. A simple solution to

this could be to provide a look-up service as illustrated

in Figure 4c on page 15 where the connection initiation

is based on a connection pro�le retrieved from a look-

up service. Such an architecture could be integrated

with regular DNS name look-ups, MiG could use dy-

namic DNS to push DNS entries of remote desktops to

DNS servers and DNS naming convention such as desk-

top47.migrid.org could be used.

However trying to facilitate basic end to end connections in this manner, even when using a smart

look-up middleware still pose a very big problem for integration with MiG.

Fig. 5: Proxy-based architecture.

According to the design criteria anonymity must be

maintained, tra�c should be restricted to SSH or

HTTPS and be �rewall compliant. These traditional

architectures violate all design criteria of MiG, the end-

points are directly connected and thus anonymity is lost,

tra�c is plain RFB not SSH or HTTPS and this breaks

�rewall compliance.

A proper architecture should maintain anonymity for

both parties (users and resources), be �rewall compliant and somehow utilize either SSH or

HTTPS for the transport. It should also provide a means for packet inspection and content

2 Analysis and Requirements Speci�cation 16

�ltering to provide features such as content rewrite. This is needed since most protocols and

also in the RFB protocol, the hostname of the server is send in the handshake, this would reveal

the identity of the server and compromise anonymity. If the architecture can not �lter out such

information then the chosen software stack should be able to disable sending that information.

From the set of best-�tted software only the x11vnc server is able to parametrize the hostname

that is being send.

Various solutions for providing anonymity on the Internet exist; open HTTP proxies, SOCKS

proxies and advanced daisy-chained anonymous proxies such as the TOR network. In MiG

anonymity is sought to hide users and resources from each other, complete anonymity is not

sought after, MiG in fact must know about the participating parties, thus complete traceless

anonymity is not the goal.

The use of a proxy-based architecture should also be completely transparent to the user, the

proxy should be able to create a perceived connection from the client to the server from a users

perspective. Since only outgoing tra�c is available from the virtual machines OS then the proxy

should be able to receive connections from both clients and servers. Such an architecture is

illustrated in Figure 5 on page 15.

2.3.1 Summary

The expansion of MiG with an anonymizing proxy with packet inspection and content manipu-

lation is the best-�tting architecture for enabling the needed communication without violating

the MiG rules. SSH or HTTPS must be used for �rewall compliance.

2 Analysis and Requirements Speci�cation 17

2.4 Requirements Speci�cation

As promised in the start of section 2 then the requirements gathered will be formed into a

requirements speci�cation. The requirements speci�cation is provided below as a numbered list

of requirements. The design of a model to provide remote access to virtual machines in MiG

must satisfy this list of requirements.

1. Be compatible with VirtualBox Open Source Edition.

2. Require no MiG speci�c software to be installed on user nor resource machine.

3. Maintain anonymity of users and resources.

4. Use Python as the implementation language.

5. Design decisions must strive towards total transparency for users.

6. Use HTTPS or SSH for transport as basis for communication to be �rewall compliant.

7. Use the RFB protocol.

8. Be able to use both Java and external RFB compatible clients from the list of best-�tted

software.

9. Use an infrastructural architecture expansion such as a proxy.

10. The proxy must be able to provide anonymization of communication endpoints.

11. The proxy must be able to perform content manipulation to ensure anonymization of

identi�able data carried in protocol.

The list of requirements has some con�icts with the existing work on virtual machines in MiG.

A con�ict with requirement two occurs since users and resource owners are required to install

a customized version of VirtualBox on their machines to be able to migrate virtual machines

to resources. VirtualBox is currently the only way to interface and manage virtual machines in

MiG, thus to resolve the con�icts these additional requirements must be met:

12. Virtual Machines must be migrated from the MiG server.

13. Access to Virtual Machines must not depend on a MiG speci�c version of VirtualBox.

In the following section these requirements will form the base for the design and implementation

of a model to provide remote access to virtual machines in MiG.

3 Solution Model 18

3 Solution Model

The �nal solution model is comprised of a proxy, proxy agent and a protocol for communication

between the two. The web-interface has been expanded to provide management and interaction

with virtual machines. Support for migrating virtual machines via the web-interface and without

installing VirtualBox on the virtual machine has been added.

How this solution model satis�es the requirement speci�cation is covered by examining the

requirements below.

1,12,13 Compatibility with VirtualBox OSE has been maintained additionally dependency on

VirtualBox has been removed. Migration of virtual machines are provided by an expan-

sion of the web-interface with a subsystem for managing virtual machines and by moving

logic for importing MiG virtual machines and monitoring their execution time out of the

customized VirtualBox and into the job encapsulation.

2 Remote access has been embedded without requiring the user to install MiG speci�c software,

the user can utilize any RFB/VNC client they already have or they can choose to use a Java

client integrated into the web-interface. The dependency on MiG speci�c customization of

VirtualBox has also been removed as described above.

3 Anonymity is maintained for users and resources with the introduction of an anonymizing

proxy and as described in Section 4.3.2 then care has been taken to utilize a shared-secret

without revealing identity.

4 All parts of the solution: Proxy, Proxy Agent, Interface and Virtual Machine builder are

implemented in pure python.

5 By moving management of Virtual Machines into the web-interface and by designing and

implementing web-interface enhancements by user driven design and direct manipulation

then complete transparency for users has been achieved. The considerations for which are

available in Section 4.5.

6 Firewall compliance has been achieved by implementing MiP/RFB over TLS as described in

Section 4.4.1, e�ectively traversing �rewalls and encrypting tra�c.

7,8 The RFB protocol has been used without depending on vendor speci�c registered extensions

or VNC implementations. The issues are discussed in further detail in Section 4.1.1.

9,10,11 A proxy and proxy agent has been implemented that anonymize tra�c as described in

Sections 4.2-4. The proxy is able to perform packet inspection and content manipulation

which enables the use of any RFB, by implementing identi�cation via packet inspection as

described in Section 4.2.1 and 4.3.2.

3 Solution Model 19

3.1 Implementation Overview

The solution is available on the MiG project site[34] as a branch of the MiG code-base with the

name vm-job-vnc. The detailed modi�cations of the code-base can be inspected by reading the

changelog, links are provided in appendix A.1. The location of the changes are brie�y covered

in Table 3 on page 19. A �gure of the organization of the proxy code is given in Figure 23 on

page 56.

Path Purpose

/proxy Contains the proxy and proxy agent

/mig/cgi-bin/images Added graphics for web-interface and changed style sheet.

/mig/cgi-bin/vmachines_* Contains the interface changes for virtual machine management
and remote desktop interaction.

/mig/cgi-bin/shared/vms.py Contains a library for the virtual machine management.

/state/server_home/vms Contains skeleton �les for the creation of virtual machines.

/builder Contains the builder environment for python-vm-builder.

Tab. 3: Location of changes in repository.

3.2 Summary

The MiG rules and design criteria exist to ensure the distribution of fat in the grid model, fat

should be removed from users and resources and placed in control of the grid middleware. The

�nal solution model shows improvements in the distribution of fat as can be seen in Figure 6 on

page 19 .

User MiG Resource

VirtualBox + +

Virtual Machine + + +

Data + + +

Proxy

Java in Browser

VM Management +

(a) Original Work

User MiG Resource

VirtualBox +

Virtual Machine + +

Data + +

Proxy +

Java in Browser +

VM Management +

(b) Solution Model

Fig. 6: Distribution of Fat in Solutions.

The design and implementation of the solution model is covered in detail in the following section.

4 Design and Implementation 20

4 Design and Implementation

This section documents the process of designing and implementing a solution and thus answering

the question of whether remote access can be provided to virtual machines in MiG under the

requirement speci�cation formed in the previous section.

The design and implementation is based on initial research and experiments to uncover the

facilities provided by the RFB protocol, evaluate potential for re-embedding remote access into

VirtualBox, researching proxy design and potential for reusing existing proxies.

The initial research is used to implement a standalone proxy in the �rst iteration proxy design,

the issues are evaluated to provide the knowledge for integrating the standalone proxy with MiG.

4.1 Initial Research and Experiments

4.1.1 RFB vs VNC

Fig. 7: Fundamentals of the RFB protocol.

The remote frame-bu�er protocol (RFB)[65]

protocol was developed for use with a hard-

ware based thin-client called a VideoTile

developed by Olivetti Research Laboratory

(ORL). As brie�y covered earlier RFB takes

a di�erent approach to remote access decou-

pling it from the high-level systems by inject-

ing directly into the frame-bu�er layer. This

approach makes RFB a very simple protocol

since it is only purpose is to serve frame-bu�ers

to clients as illustrated in Figure 7 on page 20 and to handle input from keyboard and mouse

from the user. ORL later introduced Virtual Network Computing (VNC)[58] which could be

called a software version of the VideoTile. VNC is based on the RFB protocol. However with

the advent of VNC then new features where needed. But instead of standardizing the features

then registered extensions where added to the RFB speci�cation.

In literature references are often made to the VNC Protocol, however no such protocol de�nition

exist. When references to the VNC Protocol is made the reference is often meant as a reference

to the RFB protocol with some vendor speci�c registered extension. This means that there is no

common ground for providing proxy support, secure authentication or more e�cient encoding

schemes.

This means that the integration of remote access based on RFB/VNC can only rely on the fea-

tures speci�ed in [65] but should support the advances made by VNC. This covers the limitations

of the protocol now a closer look at the features available will be covered. It will be uncovered

whether the protocol reveals any sensitive information in the protocol messages and what the

interconnection requirements are.

4 Design and Implementation 21

Fig. 8: RFB Flow

The �ow of the RFB protocol is illustrated in Figure 8

on page 21, RFB performs a handshake and initializa-

tion before sending frame-bu�ers. In the handshake one

of the supported authentication methods is used. Only

two methods are standardized None and VNC Authen-

tication. VNC Authentication uses a basic three way

handshake to authenticate the user. It is noted that

VNC Authentication might reveal the identity of the

user and the proxy should �lter out such a leak of infor-

mation.

After the handshake phase initialization is performed to

negotiate the set of supported frame-bu�er encodings,

no sensitive information is carried in the client initial-

ization but the server initialization reveals the hostname

of the server, it is noted that the proxy should �lter out

this information.

The performance of using RFB for remote access depends on the supported encodings, the reso-

lution and color depth of the remote display. As an example, take a display of 1024x768 with a

color depth of 24bits encode it with the RAW scheme and deliver it via 10Mbit/s interconnects.

This will require 1024x768x24 bits / 10Mbit = ~1.88 seconds to transfer one frame-bu�er and

this is without counting latency and transport layer overhead. This means that the usage is not

quite like sitting in front of the physical machine since the user has to wait ~1.88 seconds to see

the result of the interaction. RAW encoding however does not perform any manipulations of the

frame-bu�er. Other encoding schemes signi�cantly lowers the amount of data for transmission

by compression and techniques such as copy-rect where the server sends information that the

client should simply copy a rectangle of data in its bu�er to another location thus only transfer-

ring coordinates and not pixel information. Details on the standardized encoding schemes are

available in Section 6.6 of the protocol speci�cation[65].

4.1.2 Embedding RFB into VirtualBox

Exploring the possibilities for embedding RFB into VirtualBox requires experimentation with the

source code and compiling the results. I have for this purpose put together a set of instructions to

follow for building the MiG custom version of VirtualBox, they are available in A.8. VirtualBox

already provide build instructions[66] for building the vanilla VirtualBox but the changes made in

[11] to the vanilla version requires some extra prerequisites and the instructions in the appendix

also provide output of the commands which are helpful when setting up and environment and

trying to build VirtualBox for the �rst time.

Adding RFB to VirtualBox can be done by cloning the implementations of the graphics, keyboard

and mouse devices made available to a the virtual machine, the code is available in the directories:

4 Design and Implementation 22

• /src/VBox/Devices/Input/*

• /src/VBox/Devices/Graphics/*

• /src/VBox/Devices/Graphics/BIOS/*

In total it is about 15.000 lines of C++ code, the entire code-base of the MiG Server is currently

about 15.000 lines of Python code. Doubling the size of the code-base for adding one feature

to MiG did not seem like an optimal approach I therefore searched for another way to embed

remote access.

As previously mentioned then RDP support is available in the closed source edition of VirtualBox.

I found traces of the RDP implementation and I found that remote access can be embedded by

implementing a VirtualBox frontend frame-bu�er. So instead of implementing the devices made

available to the virtual machine it would be possible to extract frame-bu�er data from VirtualBox

frontends. I've made an attempt to so and the result of my e�orts can be inspected in A.9, the

code is based on the VBoxSDL frontend. When pursuing this approach some issues became quite

clear.

Customizing VirtualBox in this way has the e�ect that it must be maintained, never versions

of VirtualBox must be tracked and the code must be tested and reimplemented for each new

version of VirtualBox thus requiring quite a lot of human resources to continuously provide

remote access to Virtual Machines in MiG. Additionally providing frame-bu�er access only via

VirtualBox restricts the remote access to only be available with VirtualBox. These two situations

almost match the de�nition of a vendor lock-in, an unfruitful situation especially for a middleware

such as MiG that seeks to glue heterogeneous environments together.

The motivation for choosing VirtualBox is that it can provide low-level access to the virtual ma-

chines frame-bu�er and thus provide remote access to the virtual machine as soon as the virtual

machine is booted. This provides access to bios information, ability to change bios properties

and see the entire boot of the operating system. This project however aims to transparently pro-

vide access to computing resources via a desktop environment, access to bios, boot information

and system start-up is simply not something the user is interested in, all they need is a desktop

environment to work in.

Based on the issues above I do not see embedding RFB into VirtuaBox as a good approach for

this project.

4.1.3 Proxying

Proxies are among other things used for these four purposes:

Anonymizing tra�c between endpoints to anonymize client activities.

Caching requests from clients to minimize resource consumption such as bandwidth and compu-

tational power on servers.

4 Design and Implementation 23

Content-�ltering responses from servers, often used in HTTP proxies to �lter out malicious con-

tent, such as virus or in SMTP proxies to �lter out and detect spam emails.

Logging requests and responses for various reasons some being monitoring others accountability

of actions performed when using services.

Proxy architectures are usually designed as forward proxies or reverse proxies. Forward proxies

as illustrated in Figure 9a on page 23 are used in environments where administrators wants to

govern the use of external resources. A typical example are HTTP proxies where a forward

proxy can be installed in an organization to provide caching of web content to reduce tra�c,

�lter content such as pop-up adds or in other ways �lter content to protect the clients.

(a) Forward proxy.

(b) Reverse proxy.

Fig. 9: Proxy architectures.

Reverse proxies as illustrated in Figure 9b on page

23 are used to govern the access to servers, an ex-

ample related to HTTP tra�c is to distribute the

load from clients between a cluster of servers. The

naming reverse proxy does not refer to the use of

reverse connection initiation, the traditional con-

nection initiation is used and as the �gures show

these typical proxy design does not �t with the ab-

stract architecture as illustrated in Figure 5 on page

15.

When designing proxies a notion of proxy aware-

ness [73] should be considered, it is repeated here

for discussion of the trade-o�s between the di�er-

ent types and their �tness for MiG. The question

to be determined is at what level changes to must

be made, the described levels are: application soft-

ware, user procedures, router (hardware) or oper-

ating system software. The various levels are best

described by examples.

Proxy-aware application software, a common fea-

ture in web-browsers are the ability to specify a HTTP proxy. Doing so lets the browser

perform all HTTP requests to the proxy server instead of connecting to the server. Using

this type of proxy awareness, once con�gured in the application software provides trans-

parency for the user. They utilize the browser as they normally would and can't see the

di�erence.

Proxy-aware user procedures, usefully applied when

the application software is not proxy-aware.

The user must then be aware of a procedure.

E.g. a user uses an ftp client always connect

to the same host (proxy host), but in her login

4 Design and Implementation 24

credentials add user@thehostshereallywants.com

then the proxy fetches this from the hand-

shake and forwards the connection.

Proxy-aware router (hardware), can be applied for

creating transparent access for both appli-

cation software and users by translation of

packages based on packet inspection.

Proxy-aware operating system software, can be ap-

proached by adding dynamically loaded li-

braries and hereby catching function calls and

providing a proxy aware variant of the library

function.

Another method not covered in [73] is to add proxy awareness to the virtualization layer by

implementing proxy-aware virtualized network interfaces as a plug-in to VirtualBox. Doing

this would provide a solution similar to router based awareness utilizing packet inspection and

translation at the network layer. But I have already pursued VirtualBox speci�c solutions and

uncovered the issues of a VirtualBox only solution and also in this case the issues still apply and

I therefore will not pursue this approach further.

The RFB protocol does not support proxying, thus no standardized proxy protocol for RFB is

available and only one (TightVNC client) of the best-�tted software stacks support proxying

but not in an way compatible with the abstract architecture and only little documentation as

to how it works is available. This approach could however still be used but the trade-o� would

be that custom software stacks must be implemented and maintained and the use of an already

installed VNC client would not be possible. Using this approach should only be used if no other

means of proxy-awareness are feasible. Adding awareness via the user and resource routers or

via modi�ed operating system software will be a very intrusive approach requiring access and

control of routers and the users operating system. This would be a very cumbersome approach

since the use of grid computing is provided for many di�erent heterogeneous environments and

to support them many di�erent operating system libraries must be implemented and maintained.

Enabling proxy-awareness by user procedures is a more appealing approach since no software

stacks must be customized and maintained, and it might be feasible if it is possible to use parts

of the RFB protocols handshake like in the example of the ftp client. However doing so would

not create the transparency expected for the users. Transparency can be regained by letting the

MiG interface provide connection pro�les containing the parameters needed. This approach is

highly user-friendly since all the technical details of job encapsulation, protocols, client software

and connection parameters are hidden from the user. Thus complete transparency for the user

would be achieved.

4 Design and Implementation 25

4.1.4 Existing Proxies

Many proxies exist capable of both forward and reverse scenarios, the most widespread are based

on SOCKS, HTTP, onion routing or a combination thereof and few are speci�c VNC proxies.

Some are provided as services on the Internet others as installable software to mention a few I've

collected the list below:

proxify[40], A service that anonymizes sur�ng habits of the user by browsing through their web-

site.

socksify[60], A service hosting a SOCKS server.

anonymizer[1], Provides a software bundle that must be installed on the users computer and as

a service provide a set proxies with the purpose of anonymizing the sur�ng habits of the

user.

privoxy[14], an open-source non-caching web proxy with advanced �ltering capabilities for en-

hancing privacy. It is not provided as a service as the above but actual software is provided

for installation in the environment needed.

proxi�er[61], generic proxy server supporting both SOCKS and HTTPS via client installed soft-

ware.

Squid[62]/mod_proxy[18]/Varnish[28], the HTTP proxy Squid is primarily used for caching web-

content for users whereas Varnish is focused on load-balancing for web-servers whereas

mod_proxy serves both purposes.

OpenSSH[38], client side support for SOCKS proxying and tunneling.

TOR[15], the second generation onion router is highly focused on providing a high-level of

anonymization for its users and is also capable of what they call hidden services. A feature

none of the other proxies are capable of.

UltraVNC-Repeater[56], is a VNC proxy server supporting both forward proxy con�guration and

reverse connections. But it relies on the use of the UltraVNC client and server.

VNC-Re�ector[55], is a generic VNC proxy server.

VNC-Proxy[41], is despite its name not a generic VNC proxy but a specialized proxy made for a

project named Chromium Renderserver that utilizes the RFB protocol in a very application

speci�c way.

Three core issues with reusing any of these existing proxy servers are:

Architecture: most of the proxies are made for HTTP and are made for supporting either regular

forward or reverse proxies since their purpose is to serve web-clients or balance access

to web-servers. There is no support for managing the RFB protocol or reverse initiated

connections.

4 Design and Implementation 26

Proxy-awareness: as covered in the previous section the best way to approach proxying is to �nd a

way to support proxy awareness through user-procedures since none of the existing proxies

supports this approach then the proxy must be extended to understand the user-procedures.

Implementation-language: the VNC proxies are all implemented in C or C++ this violates the

MiG rule: everything must be implemented in Python unless another language is strictly

necessary.

The issues of implementation language would not be a problem if the proxies had the exact

functionality needed but there is a need for expanding the proxies to live up to the requirements

established in 2.4 . The most promising proxy is the VNC-Re�ector project. The VNC-Re�ector

is designed such that all features of the VNC server must be implemented in the proxy in order

for the client to utilize them and it does not support proxying in the architecture needed. Not

much code can be reused and a lot of code must be added to obtain the functionality needed.

Since the VNC-Re�ector must be considerable modi�ed then not much is gained from reusing it

and it would be hard to argue against the Python only MiG rule.

4.1.5 Sockets and Asynchrony

Regular TCP based network services are implemented with standard socket libraries. When

implementing a network service a choice between using blocking or non-blocking sockets must be

made. Blocking sockets creates synchronous access to the service which means that the service

processes one request at a time, such behavior is not attractive since only one user can be serviced

at a time. Asynchrony must be obtained and there are several well-known ways of doing so, one

approach is to use threading or forking by servicing each user in a thread or process of its own.

Another approach is to use non-blocking sockets and use the select system call to switch be-

tween processing the sockets. The advantages of the select call and non-blocking sockets is

that the overhead of spawning threads and processes is removed. The trade-o� is that non-

blocking network services are regarded as being more complex to implement since they require

the programmer to implement the switching and management of the input/output on the sockets

whereas a threading or forking approach let's the operating system manage the complexity of

switching.

Encapsulations of these methods are available in python via standard library and third party

libraries, the most popular are:

• Threading: thread[49], threading[50], SocketServer[47] with mix-ins.

• Forking: subprocess[48], multiprocessing[44], POSH (Python Object Sharing)[45].

• Select: Twisted(3rd party)[25], asyncore[43], select[46].

The forking / subprocessing encapsulations are mainly focused on providing ways to perform

cpubound computations in python, this is not easily achieved by threading because of Pythons

4 Design and Implementation 27

global interpreter lock, thus various approach to solve this exist. This project however will

implement a network service that is I/O bound not CPU bound no real advantages for this

project is thus achieved by using a forking approach for the obtaining asynchrony. Using the low-

level select module would add switching complexity to the code without providing any signi�cant

gains, asyncore removes the complexity by providing a framework for these challenges so it might

be an interesting tool-set.

Using frameworks in general provides the programmer with a lot work already done and guidelines

and conventions that eases the implementation process. The trade-o� however is that if the

framework does not exactly match the problem that needs to be solved then the conventions of

the framework must be broken which results in a code-base that is even harder to maintain than

a solution implemented from scratch.

A classical threading approach is still feasible and the twisted framework also shows promise.

Twisted provides a big set of pre-built applications, it has on-line documentation, a printed book

and a lot of commercial interest has been shown for the project. Work has been made to try

and evaluate the applicability of twisted in twisted vs threads benchmark[52]. It seems hard to

determine the applicability of twisted for this project, the framework is big and the simplicity

it solves by managing select is replaced by introducing twisted terminology and concepts for

implementing network services.

A classical threading approach seems su�cient to obtain asyncrony.

4.1.6 Summary

Embedding remote access into VirtualBox leads to a MiG speci�c customization of VirtualBox

which resources are required to install in order to provide remote access to virtual machines. This

is a direct violation of the MiG rules. The rules are however already broken by the customization

for enabling migration from user machine to resource but this is not a justi�cation for tightening

the dependency on VirtualBox further. The design and implementation process should instead

strive to �nd a solution that can rid MiG of the dependency.

The considerations for implementing a proxy has been covered and it has been established that

no existing proxies are well-suited for providing remote access to virtual machines in MiG.

To support RFB then only the functionality standardized can be relied upon to be available.

This will ensure interoperability and provide support for even the most primitive VNC clients.

Improvements made by various VNC vendors should however be possible utilize when available.

4 Design and Implementation 28

4.2 First Iteration Proxy Design

Fig. 10: First architecture.

With the �rst iteration of proxy design and implemen-

tation focus is laid upon creating a standalone proxy ca-

pable of establishing a connection between a vnc client

and server. The architecture of the proxy is illustrated

in Figure 10 on page 28 and the �gure shows then the

design relies on the software stacks ability to perform re-

verse connection initiation but instead of connecting to

the client directly it instead connects to the proxy server.

The client connects directly to the proxy server. The

two issues to solve in this architecture are how to imple-

ment the management of sockets to obtain anonymiza-

tion and how to pair client and server connections. The latter requires that the proxy must be

able to make a pairing decision based on an identity provided by the client and server I considered

the following three approaches.

Naively let the proxy provide a pair of ports, one port for the client another for the server and

simply connect the �rst client with the �rst server that connects to the ports. Naive

is a suiting label for this approach since it provides no guaranties for creating a correct

match between client and server in a multi-user environment. A slight improvement to this

approach would be to dynamically allocate port pairs and thus provide a short guarantee

for the user that a connection to a certain port will provide a connection to the correct

desktop. The trade-o� is that the port pairs must be communicated to the client and

server. This can be achieved for the user via the web-interface but it would require quite a

lot more to automatically communicate the port to the vnc server and instruct it to initiate

the outgoing connection.

port-knocking is normally used to dynamically open a port in a �rewall by connection setups

in a knock-sequence to a set of closed ports. This technique could be used in a another

way by using the knock-sequence as the client and servers identity. This would be possible

by providing a script for the VNC server parametrize reverse connection attempts with

the knock sequence. The client can via the web-interface be instructed in the procedure

required to connect to the proxy. The single-port port knocking technique can't be used

since that would require the client to install a port knock client. The trade-o� is that the

the user procedure would be quite tedious for the users and the connection setup themselves

would require a great deal more bandwidth than regular connection initiation.

packet-inspection could be used to extract identi�cation information from the RFB protocol.

Providing still a port for clients and another for servers such that the proxy knows the

type of the incoming connection and know what data to extract.

Given that the packet inspection approach has most potential for producing a solution with least

added annoyance for the user and without tra�c overhead I chose to investigate the method

4 Design and Implementation 29

further.

4.2.1 Proxy Awareness by Packet Inspection

The proxy must be able to identify the client and server but at the same time ensure that neither

end obtain sensitive about the other. As described in 4.1.1 then the handshake phase carries

information identifying the client and the initialization carries information identifying the server.

Client-identi�cation can be obtained by the proxy intercepting the data send in the VNC Authen-

tication, a detailed illustration of the VNC Authentication method is illustrated in Figure

11a on page 29. The client however will not start the VNC Authentication before it has

reached stage �ve in the handshake, to trigger the client to get to this stage the proxy must

inject a fake handshake.

Server-identi�cation can be obtained by intercepting the data send in server initialization message.

Another issue is that the server won't send the server initialization message until it has

reached stage eight, to trigger it the proxy needs to inject both a fake handshake and a

fake initialization.

(a) VNC Authentication (b) Proxy �ow

This approach is illustrated in Figure 11b on page 29 showing how the fake initialization is also

performed with the client to ensure that client and server are in the same stage. The information

from the server is an almost unbounded plaintext representation of the servers hostname. The

information extracted the client is a 16-byte DES encryption of the random challenge send from

the proxy in the fake handshake. The encryption uses eight bytes of user-supplied input as salt

for the DES encryption. The extracted client and server information can therefore not be used

for pairing clients and servers without changing representation. Two approaches for changing

representation are

reversing-client-identi�cation: to obtain the user-supplied data the DES encryption needs to be

reversed, since the proxy knows the challenge that has been encrypted the proxy can

4 Design and Implementation 30

perform a known-plaintext-attack. Doing so is computationally intensive but it would

provide the eight bytes salt which is the user-supplied data. These eight bytes can then be

used to match with the �rst eight bytes of the servers hostname.

encrypting-server-identi�cation: since the content of the identi�er is not needed a much less com-

putationally expensive approach is to simply DES encrypt the random challenge using the

�rst eight bytes of the servers hostname as salt. Thus pairing can be provided by matching

this recently encrypted challenge with the challenge response from the client.

I've chosen the latter since it obtains the same goal but with the least computational overhead.

4.2.2 Anonymization

To maintain the anonymity in MiG the proxy must ensure anonymous operation without re-

vealing sensitive information about the end-points. Anonymity is maintained in the proxy by

only transferring application level data, the TCP/IP level is thus indirectly removed. By the

methods of fake-handshake and fake-initialization the sensitive data at the application-level is

also anonymized.

4.2.3 Implementation

When experimenting with the design considerations as previously mentioned then some practical

issues where uncovered related to the code-base. In my �rst implementation of the proxy I chose

to weave my own asynchronous sockets based on the threading module available in standard

library. I was quite pleased with the implementation and I knew all the ins and outs of the

code and had full control of everything. The downside was that I had reinvented the wheel,

the SocketServer framework provided in the standard library did exactly what I had done. The

SocketServer framework provides a generic yet minimalistic approach to sockets and can with a

very simple change in the class de�nition switch the server being threading to forking. I chose

to re-factor the code to use SocketServer with threading mix-ins. A lot of time can be saved by

harvesting the powers of the standard library. I wish that I would have realized this much earlier

on.

4.2.4 Issues

The �rst-iteration design discussed in this section forces sub-optimal operation because the proxy

must make assumptions on the capabilities of VNC clients and servers and handle state book-

keeping.

This is due to the fake initialization performed to obtain proxy awareness and pairing connections.

At the time where the proxy performs the fake handshake with the client it does not yet know

the counterpart of the connection it therefore cannot send the correct set of supported encodings

to the client, nor can it inform the client of the correct resolution of the remote display. It

4 Design and Implementation 31

therefore has to make an assumption of the supported features, the proxy can either choose to

only announce the encoding schemes de�ned in the RFB speci�cation this would ensure safe

operation since it could be expected that a VNC server and client implements the encoding

schemes as de�ned in the speci�cation. The speci�cation however states that only the RAW

encoding is su�cient to implement for a client to label itself as standard compliant, thus RAW

e�ectively becomes the lowest common denominator and to ensure correct operation then the

proxy should only announce RAW encoding in the fake initialization this would impose great

bandwidth requirements as previously described. Alternatively the proxy could announce a set of

encodings equal to the set of encodings that all clients in the list of best-�tted software supports.

Another issue presents itself regarding the state of the client and server connections. The situa-

tion illustrated in Figure 11b on page 29 presents the best case: the server connects to the proxy

before the client. This situation is the best since the proxy then knows the resolution of the

frame-bu�er and the capabilities of the server but in practice then the client could easily be the

�rst to connect to the server. If the client does then the proxy would not know which encodings

to announce to the client and the assumptions above must be used another problem is that it

does not have a VNC server to pass frame-bu�er request to. A solution would be to simply drop

client connections if no matching server exist or the proxy could implement a fake frame-bu�er

that it can send to the client.

Another issue regarding connection state is that the implementations of reverse connection initi-

ation in x11vnc and TightVNC, which are the only of the best-�tted VNC servers that support

reverse connections, is that they only expect to handle one client per connection and their inter-

nal state relies on this, this means that the proxy must maintain the state bookkeeping in case of

connection failure from the client. If the client disconnects while receiving a FrameBu�erUpdate

then the proxy must handle this properly. Multiple scenarios leads to connection state errors

which must be handled by the proxy.

An alternate solution instead of basing the implementation on assumptions would be to imple-

ment message translation in the proxy for example if a client only supports RAW encoding but

the server supports a more e�cient encoding such as ZRLE (see Section 6.6.5 in [65]) then the

proxy could transform the representation of the frame-bu�er when it receives the frame-bu�er

update from the server from ZRLE to RAW. And send the transformed frame-bu�er update to

the client. The trade-o� is added complexity to the proxy and higher requirements to the proxies

computing resources.

The bottom-line is that the implementation of the design consideration at this stage requires

state bookkeeping and using sub-optimal assumptions of the client and server capabilities and

high complexity in the proxy logic, an implementation based on these �ndings can be used but

in the second iteration design I will seek to improve the design by minimizing complexity.

4 Design and Implementation 32

4.3 Second Iteration Proxy Design

Fig. 11: Second architecture

The previous section discussed some design is-

sues which could be solved but with a trade-o�

of added complexity to the proxy this section

discusses an approach that solves the design

issues without adding complexity to the proxy.

Lets address these issues by doing like the coy-

ote and the roadrunner and going back to the

drawing board. The main sources of the issues

are listed below and reevaluated.

Fake-initialization is needed for adding proxy awareness by user procedures and extracting the

identi�cation with packet inspection. It was established that the identi�cation of the client

could be provided by inspecting the handshake but fake initialization was added to provide

identi�cation of the server. If another method for identifying the server could be provided

then fake-initialization could be removed.

Reverse-connection-initiation Reverse connection initiation from the server is needed since ingoing

access to the Virtual Machine is not available. But could reverse connection initiation be

provided by other means than relying on the servers ability for doing so?

The issues with the previous design lies within the servers identi�cation and connection initiation.

The server software is installed in an environment controlled by MiG, the virtual machine is

made available by MiG and MiG controls the available software and con�guration of the virtual

machines operating system. An approach could be to install a piece of MiG software in the

virtual machine that provides server identi�cation and provides the connection setup needed,

this can be done without violating any MiG rules or design criteria.

This leads me to the second architecture as illustrated in Figure 11 on page 32. The architecture

is expanded to include a proxy agent the proxy agent takes care of the issues of creating reverse

connections to the proxy and thus removing this requirement from the VNC server.

4.3.1 Proxy Agent and Protocol

The proxy agent must be able to communicate with the proxy to inform the proxy of the identity

of the server that it is proxy-enabling and to establish connections to the server on demand. This

is done by three messages handshake, setup request and setup response. Described below.

Handshake Send from the proxy agent to proxy after connection initiation to start a control

connection and establish identi�cation of the proxy agent. After the handshake the proxy

can then send multiple setup request messages.

Setup-request Send from the proxy to the proxy agent over the control connection to instruct

the proxy agent to establish a connection.

4 Design and Implementation 33

Setup-response After the connection setup has been performed by the proxy agent it sends a

status message back to the proxy server over the control connection to communicate success

or failure of the setup-request.

The above messages are encapsulated in a protocol that I have chosen to call Minimum Intrusion

Proxy (MiP) protocol. MiP is a simple byte-oriented protocol, the byte-sequences representing

the above messages are documented in A.5. The functionality of this design is best described

by providing an illustration of the �ow when handling the RFB connections such is provided in

Figure 12 on page 33.

As the �gure shows then the fake initialization is removed, reverse connection initiation is handled

by the proxy agent as well as informing the proxy of the servers identity via the proxy agent

handshake. The only state to handle for the proxy is when the client connects before the proxy

agent has performed the identi�cation handshake. Choosing to maintain the connection with the

client before the proxy agent handshake would require that fake initialization must be used to

avoid the client to timeout the e�ort of a proxy agent would thus be useless. Even if a timeout is

not implemented in the client then maintaining a connection with the client could result in the

client waiting forever if the user supplied identi�cation is invalid since no proxy agent would ever

connect and match the identi�cation. It is thus a sound choice to simply close the connection

with the client if no the corresponding proxy agent has not yet connected.

Fig. 12: Connection �ow with proxy agent.

4 Design and Implementation 34

Having de�nined a way to achieve identi�cation then proxy awareness will be revisited to discuss

the content of the identi�ers.

4.3.2 Proxy Awareness Revisited

The hostname of the VNC server has so far been used as content for the identi�er. The use

of hostnames for identi�cation is an issue. Not with anonymity as previously considered, even

though it seems like revealing the hostname of the VNC server would pose an issue. But the

fact is that the hostname is not the hostname of the resource but the hostname of the virtual

machine. Virtual machine hostnames are simple names such as mig_scilab, mig_vanilla and

the user already knows the identity of the virtual machine that they are accessing. The issue

regards uniqueness of the identi�er, when multiple users are using mig_scilab as content for the

identi�er then collisions will occur as soon as more than one user wants to remote access the

remote desktop environment. Thus an identi�er with higher uniqueness must be obtained.

It would be ideal if a shared secret between the client and server could be established, thus would

pairing connections be a trivial task of matching identi�ers that would provide accurate access

to the desktop environment without collisions. A shared secret is already in use in MiG; the

job-identi�er. Only the user submitting the job knows the unique job-identi�er and since the

migration of virtual machines to MiG is implemented by encapsulating the migration as a job

then a one-to-one mapping exist between job-identi�er and virtual machine/desktop environment.

The job-identi�er is already made available to the user via the web-interface, the challenge is to

communicate the job identi�er to the proxy agent since the virtual machine has no knowledge

of the job that it is encapsulated in. Another challenge is that job-identi�ers are strings such

as 354887_1_20_2009__18_4_26_mig-1.imada.sdu.dk.0 far greater than eight bytes in size.

To use the job-identi�er two problems must be solved: communicating the job-identi�er to the

proxy agent, transforming the job-identi�er into a representation of eight bytes in size that the

user can input into the VNC client.

representation: transforming the representation involves taking a job-identi�er as input and pro-

ducing an eight byte user-input-able output. In this context user-input-able means an eight

byte string with ASCII[2] representation. An issue to take into consideration is that ASCII

contains 256 chars but only 94 of them are actually user-input-able. The transformation

must thus map into a subset of the ASCII table. The function for performing the transfor-

mation is listed in Figure 13 on page 35 and an example of the tranformation is provided

in Figure 14 on page 35. The transformation will provide 94^8 unique identi�ers.

shared-secret-communication: can be achieved by utilizing features available in MiG and Virtual-

Box. VirtualBox provides a means for communication between hosts and guests, these are

called guest properties. MiG provides a meta attribute in job descriptions that lets it utilize

job identifers as parameters for commands in the job description. Combining these two

features communicates the job-identi�er to the guest operating system the encapsulation

can be inspected in A.7.1. The identifer is then extracted inside the guest-operating system

by the system user and passed as a parameter for the proxy-agent.

4 Design and Implementation 35

The above methods provides a feasible solution for providing shared-secrets with a much better

unique-ness than using the hostname of the guest operating system.

1 de f t r an s f o rm_iden t i f i e r (job_id='Unknown ') :
2 job_id_digest = md5 . new(job_id) . hexd ige s t () [: 1 6] # e i gh t byte md5 sum
3 i d e n t i f i e r = ' '
4 for i in range (0 , l en (job_id_digest) , 2) :
5 char = int (job_id_digest [i : i +2] , 16) # get "hex−char "
6 char_domain = char % 94 # map to sub−s e t
7 i d e n t i f i e r += chr (32 + char_domain) # s h i f t i n to range
8 return i d e n t i f i e r

Fig. 13: Tranformation function in Python.

1 t r an s f o rm_iden t i f i e r (' 354887_1_20_2009__18_4_26_mig−1. imada . sdu . dk . 0 ')
2 −−>
3 ^HbD)GJo

Fig. 14: Example of transformation.

4 Design and Implementation 36

4.4 Third Iteration Proxy Design

So far an architecture has been designed and implemented that can provide remote access to

virtual machines in MiG, but there are still requirements left to be solved, those are to provide

�rewall compliance and providing client software without intrusively installing it on the users

machine. These requirements are discussed in each of their own subsections.

4.4.1 Firewall Compliance

To obtain �rewall compliance then the link between the proxy and the proxy agent must comply

to the �rewall requirements speci�ed in Section 2.4. Obtaining �rewall compliance can be done

by either encapsulating RFB messages in HTTP request/response messages, using the HTTP

connect [21], TLS/SSL over HTTP [22] or SSH tunneling [20]. SSH tunneling is a bit cumbersome

to setup and maintain since it requires the creation and existence of a user on the proxy server

for the purpose of tunneling, the SSH daemon must be con�gured to lock the user down so he

cant use the tunneling features for anything other than localhost and also restrict the usually

available shell features of SSH. I have therefore pursued the HTTP-based approach since it does

not pose any host requirements such as those just described.

HTTP-encapsulation can be achieved by embedding RFB protocol messages into the body of a

POST request or the header of a GET request. Responses can then be encapsulated in

HTTP responses. An example of this encapsulation approach is given in Figure 24 on

page 57. The trade-o� for this approach is that signi�cant overhead in message sizes is

introduced and encapsulation/de-encapsulation must be performed for each request.

HTTP-connect is a very lightweight approach to punching holes in �rewall policies, the details

of how the HTTP connect works is described in [29]. The essence is illustrated in Figure

25 on page 57. It is a very simple way to squeeze any type of tra�c through a �rewall that

allows HTTP. And in relation to HTTP-encapsulation then it only requires encapsulation

in the connection setup and not in each each request/response.

HTTPS is also called HTTP over TLS/SSL. HTTPS works by the client initiating a connection

the server, then a TLS/SSL handshake starts and a secure layer is established encrypting

HTTP messages send over TLS/SSL. HTTPS can be used to provide �rewall compliance

to RFB by implementing MiP/RFB over TLS/SSL this is possible since the �rewall can't

inspect the packages and identify whether the packages are HTTP, MiP or RFB since the

application level packets are encrypted. Very complex �rewalls might be able to identity

the application level protocol by analyzing tra�c patterns.

Of the above mentioned methods then utilizing TLS is the strongest option since it provides a

means for encrypting the transmitted data and as mentioned in 2.2.2 then no standardized way

of obtaining encryption is available in the RFB speci�cation. The introduction of a proxy agent

shows signi�cant advantages at this point since all the non-standardized features as previously

4 Design and Implementation 37

mentioned can be added to the proxy agent and thus to the middleware and hereby providing

the non-standardized features to any VNC server.

4.4.2 Sockets and Asynchrony Revisited

Adding TLS to the proxy and proxy agent requires reconsideration of some implementation

choices regarding sockets and asyncrony. A library should be chosen to manage the complexity

of TLS since nothing is gained by implementing the SSL/TLS from scratch.

From python 2.6.2 SSL is part of the standard library the version of python available to MiG

however depends on the version available in base system of Debian stable, currently that is python

2.5. Therefore a 3rd party library must be used. The pyOpenSSL[42] library is available on the

MiG server, other alternatives include but are not limited to: M2Crypto[53], ChilKat[10] and

TLSLite[51]. I've chosen to use pyOpenSSL simply because it was the best SSL implementation

available in Python.

When covering sockets and asyncrony I described the advantages of the SocketServer framework.

However not all issues can be solved with SocketServer and a threaded approach, in the core of

the proxy is a module named Plumber whose purpose is to tunnel tra�c between two sockets.

This is the part of the proxy that anonymizes the network layer, by only copying the application

level data between the two sockets. The plumber performed a blocking read and in another

thread a concurrent write to the same socket. This is not a problem for regular sockets as they

are thread-safe, however when adding encryption via pyOpenSSL or more speci�cally OpenSSL

then the thread-safety is lost. OpenSSL does not support a blocking read and a concurrent write

to the same socket, trying to do so results in a �PyEval_RestoreThread: NULL tstate�. I learned

this the hard way.

Thus TLS wrapped sockets must be accessed sequentially, this is not easily done with blocking

sockets, since trying to govern a blocking read with a lock will result in a deadlock.

This is where select shines, a select call can check if an I/O stream has data in its bu�er. This

property can be used to avoid the deadlock by checking with a select call whether there is data in

the bu�er and only take the lock in case there is. This approach is feasible but adds a signi�cant

overhead of busy select calls and locking.

I instead chose to rewrite the core of the Plumber by switching the sockets dynamically from

blocking to non-blocking and replace it with select based I/O handling. I thus achieved to

provide safe access to the TLS based socket without excessive use of threading and locking. The

complexity of the I/O handling is reduced to a very small core area so the simplicity of the

code-base is not sacri�ced.

4.4.3 Client Software

As previously mentioned then installing software on the users machine is considered intrusive

and a violation of the MiG rules. A minimally intrusive approach is thus to facilitate the use

4 Design and Implementation 38

of a Java-based client. Java applications can be distributed by either using Java web-start or

embedding the Java application into the browser with Java applets both methods require the

installation of a Java run-time environment.

Java-Web-Start encapsulates the application into a self-contained sandbox environment with the

needed requirements bundled into the web-start environment. Java Web-start is however

mainly focused on deployment of the application via a browser and not to run inside the

browser window.

Java-Applets are embedded into the browser by inserting the <applet> tag into the HTML doc-

ument, the Java application is then running inside the browser and can thus be integrated

into the existing web-interface.

Java-Web-start has the advantage that it provides a less restrictive environment than an applet

based approach. Java-web-start is as mentioned not integrated into the browser and it is thus

harder to implement a seamless integration of a web-start based application. I have therefore

chosen to use a Java-applet, the restriction to comply with is that the run-time environment

per default is con�gured to only allow outgoing network access to the server that the applet

is downloaded from. This forces the proxy and webserver to be available to the client from

the same IP address, this causes a con�ict since the �rewall compliance as previously described

required the use of port 443. One solution to this problem is to change the con�guration of the

run-time environment for the user this however is not a very transparent approach and users

are forced to maintain a list of proxy servers that they are allowed to connect to. Instead of

imposing this burden on the users I have chosen to implement a simple applet-server in the proxy,

a minimalistic webserver with the sole purpose of serving Java clients to its users. This also has

the added value that the proxy can always provide a compatible VNC client for the user.

4.4.4 Summary

This covers the design and implementation of expanding the backend of the middleware that

lets MiG capable of providing remote access to virtual machines in MiG which is the primary

objective of this project. The key enablers for the solution are:

proxy the expansion of the MiG backend with a proxy capable of performing packet inspection

and anonymizing users and resources.

proxy-awareness by user procedures and utilization of packet inspection obtained proxy support

for even the most primitive VNC client.

proxy-agent maintained �rewall compliance by examining the features available in the HTTP

and HTTPS protocols and hereby adding transport layer security between the proxy and

proxy agent and thus enable identi�cation and secure communication for even the most

primitive VNC servers without removing capabilities for the most feature-rich.

4 Design and Implementation 39

shared-secret identi�cation without revealing the identity of users or resources by utilizing job

identi�ers and transforming them into a user input-able representation.

During the process it has been discovered that to successfully provide remote access to virtual

machines in MiG then the existing work of migrating machines must be improved by removing

the dependency of a customized VirtualBox to successfully let the complete solution comply

with the MiG rules and design criteria. The migration of virtual machines also depends on the

availability of VirtualBox on the users machine this requirement causes a con�ict with the MiG

rules and therefore must the management and migration of virtual machines functionality be

provided via the web-interface in MiG.

4 Design and Implementation 40

4.5 Virtual Machines in MiG

In this section I address some design decisions in the original work on virtual machines in MiG.

Hypervisor-dependency: The choice of using VirtualBox as the virtualization tool based on a

requirement that the source code should be freely available such that the virtualization

tool could be modi�ed to integrate it with MiG. I've implemented a solution that removes

this requirement by encapsulating the MiG integration into the job description utilizing

the features made available by the virtualization tool instead of modifying it. The solution

however has a trade-o� in relation to the original work.

Transfer-time: Issues were raised with the transfer times of virtual machines, the virtual machine

must be transferred from the user to MiG and from MiG to a resource. I introduce a

solution that e�ectively lowers the transfer times by simply removing the transfer from the

users machine to MiG in compliance with the MiG rules and design criteria of fat grid

middleware and slim clients.

Operating-system: Regular installation of an arbitrary Linux distribution was discarded since

tests had shown that it was too cumbersome to implement virtual machines based on

regular installation of the guest operating system thus the ISO based slax distribution

was chosen. I provide a solution that removes the dependency on the slax distribution by

introducing virtual machine builders which provides a simple approach to regular operating

system installation.

4.5.1 Hypervisor Dependency and Migration Issues

The original work of virtual machines in MiG depends on a customized version of VirtualBox,

the customizations are made to VirtualBox to be able to integrate VirtualBox with MiG. The

biggest challenge was to maintain the state of execution of the virtual machine when the machine

is migrated from the users machine to the resource. VirtualBox does not support migration and

when trying to resume a saved state of a virtual machine on another host with a di�erent CPU

then VirtualBox complains that the CPU is di�erent. Thus to provide migration the CPUID

check where removed from VirtualBox.

I discovered another issue with the migration, it is not possible to change the amount of

memory available to the virtual machine when migrating, trying to do so will result in a

VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH error from VirtualBox. The reason for

this error is quite natural but it does however describe another issue with the migration approach

to providing remote virtual machines in MiG.

To provide migration of virtual machines from the users machine to a resource in MiG, then the

following compromises must be made:

• No CPU extensions can be used, due to the removed CPUID check.

• Only homogeneous migrating since migrating from 32bit hosts to 64bit hosts is not possible.

4 Design and Implementation 41

• Only 32bit guests are supported.

• More memory cannot be provided to the virtual machine.

A general motivation for using grid computing is that a user can get access to more computing

resources that those available locally. The issue with the above compromises is that the only

resource advantage is that access to a higher clock frequency can be provided. The same memory

and architecture as the one available locally is provided. Thus the main advantage of the current

virtualization approach is concerned with the usability of MiG.

The compromises mentioned above can be avoided and the dependency of a customized Virtual-

Box can be removed if the execution state of the Virtual Machine does not need to be migrated

from the user to the resource. If the virtual machine is not migrated from the user another de-

pendency of installing a MiG speci�c software on the users machine can also be removed. Thus

removing VirtualBox from the users machine seems like a good choice, how virtual machines are

managed without VirtualBox installed on the users machine is covered in the next section.

4.5.2 Transfer Times and Virtual Machine Management

Without VirtualBox on the users machine then the functionality for starting and creating virtual

machines must be made available via the web-interface and storage of the virtual machines must

be provided outside of the users machine. ~/vms/runvm.sh

~/vms/MachineName/

~/vms/MachineName/machine.cfg

~/vms/MachineName/data.vmdk

~/vms/MachineName/sys_systemname .[vmdk|remote]

Fig. 15: Layout of users virtual machine storage.

~/ vbox_images/plain.vmdk

~/ vbox_images/scilab.vmdk

Fig. 16: Layout of resources image storage.

This is implemented by adding a direc-

tory for virtual machines to the users

homedir with the name vms. Inside all

�les related to a virtual machine is stored

in a directory with the name of of the vir-

tual machine. The layout is exempli�ed

in Figure 15 on page 41. An option is pro-

vided for the �le-extension of the system

disk, the system disk extension can be either .vmdk or .remote. If the extension is .vmdk then

the system disk is physically available in the homedir, if the extension is .remote then the system

disk is expected to be available on the resource. An example of the storage of system disks on

resources is illustrated in Figure 16 on page 41.

By providing the choice of the system disk being available on the MiG server or on the resource

provides a means for evaluating the trade-o� of waiting for transferring the system disk for

di�erent use-cases.

The job encapsulation with system disk on the MiG server is available in appendix A.7.1 and for

system disk on the resource is available in appendix A.7.2.

4 Design and Implementation 42

4.5.3 Operating System Dependency / Introducing Virtual Machine Builders

Slax has been chosen since it provides an easy separation of system and user data, the trade-o�

with using Slax is that in relation to other Linux distributions such as SUSE, Fedora, Debian

and Ubuntu then not much software is available and the installation of 3rd party software such

as MATLAB is quite cumbersome.

I wanted to provide an approach as easy as using slax but with the rich availability of software

that other Linux distributions provide. First step is to �nd a way to separate application and

system �les. Separation of system and application �les from user data is already accomplished

by the fact that most Linux distributions follow the suggestions part of the File system Hierarchy

Standard (FHS), the only location for storing user data in a FHS compliant Linux distribution is

in /home. By mounting a static disk for �/� and a dynamic disk for �/home� then the separation

of data and system is accomplished. However automatically installing operating systems require

more work.

Installing virtual machines is part of a hot topic of virtual machine management. A recent

trend within vitual machine management is the development of the Open Virtualization Format

(OVF)[67]. An open standard seeking to provide mobility of a virtual machine between di�erent

hypervisors and a standardization of the virtual machine de�nition. The standard shows great

promise and a tool exist for utilizing the standard it does however not yet support installation

of guest operating system in the virtual machine.

Tools however do exists for doing what the OVF standard seeks to standardize. Two such tools

are python-vm-builder (VMBuilder)[9] and the virtualization api (libvirt)[26]. In relation to OVF

then these builders work by building a machine to a speci�c hypervisor in the hypervisors disk

format and machine de�nition. This does not provide mobility but VMBuilder has the strong

feature of being able to build a virtual machine with a guest operating system installed. On

modern computers the process takes about 10 minutes to complete.

I've chosen to use VMBuilder since it is implemented entirely in python and is therefore well-

suited for integration with MiG. However when more features are added to the ovftool then

it might prove a better solution. The technical details of how python-vm-builder has been

integrated with MiG is documented in appendix A.6.

4 Design and Implementation 43

4.6 Interface

Designing and implementing the user interface is split in three parts the �rst dealing with general

usability issues, secondly with providing an interface for the remote access to virtual machines

and third providing an area for managing virtual machines.

4.6.1 Usability Enhancements

The topic of usability of the web-interface is a area of research in its own in the �eld human

computer interaction (HCI). Most of the work done in MiG have been done by research in

grid computing, distributed systems and high performance computing. The design of the web-

interface is thus not developed with the focus of research in HCI.

Since the motivation for providing users with a desktop environment was that it should improve

the usability of MiG then I've approached the design and implementation by using HCI techniques

such as user driven design, direct manipulation.

To utilize user driven design an informal survey was conducted of the participants of a course

held at DIKU on cluster computing in 2008 that used MiG and a couple of my own observations.

The main issues reported by the users are listed below.

Centering: All text is centered including headers, for most users this is not optimal and decreases

readability since they are used to read from left to right and top to bottom creates uneven

lines that are not easily processed.

Space-utilization: As screen-shot shows can see in Figure 17 on page 44 then a lot of space is used

for showing the MiG logo and a navigation menu and thus pushing the content below the

bottom of the page.

Buttons: The navigation menu is based on text-only it is not easy to identify and recognize the

various subsystems available.

Colors: The colors used are mostly gray in gray with little contrast.

Based on this input I implemented a prototype that I presented to the MiG developers the

list of potential improvements was increased and improvements to the graphical design was

implemented. The above mentioned issues where solved by left-justi�cation of text, utilizing

unused horizontal space by moving the navigation menu from to top to the left-hand side and

minimizing the MiG logo and thus providing more screen real-estate. Brighter colors was added

to the interface providing more contrast and providing a sharper look. Buttons where introduced

with a feature of stickyness; the color change applied when hovering the button was made �xed

when pressing the button, this feature made it easier to identify the subsystem of the interface

that the user is currently using. Figure 18 on page 44.

4 Design and Implementation 44

Fig. 17: Original interface, downloads area.

Fig. 18: Improved interface, downloads section.

4.6.2 Remote Access

Choosing the desktop environment metaphor as a means for interaction provides a familiar

environment for the user to operate in, providing remote access to the desktop environment

must thus support this familiar interaction. Desktop environments in a non-remote context are

visually communicated to the user via the physical monitor that they are sitting in-front. Thus

to support familiarity then a virtual monitor is introduced. The state of virtual machine and the

4 Design and Implementation 45

availability of the desktop environment is visually provided by informing the user via the virtual

monitor thus all the backend details of job encapsulation is hidden from the user.

When the user clicks on the virtual monitor the state is changed to booting and the user is

instructed to wait, when the desktop is ready for interaction the virtual monitor changes state

to running and informs the user that she can �click to connect�. This interaction supports the

HCI technique of direct manipulation. The virtual machine overview interface can be seen in

19 the state changes can be seen in 20 and when actual remote access to the virtual machine is

achieved can be seen in 21.

Fig. 19: Virtual Machines area of web-interface.

Fig. 20: Machine state change.

4 Design and Implementation 46

Fig. 21: Connected to remote desktop environment.

4.6.3 Request Virtual Machine

Functionality for creating virtual machines is provided by �lling out a formula and either choosing

a pre-built machine or specifying the machine properties and hereby request a personal virtual

machine. However the implementation of personal virtual machines is left for future work. The

virtual machine request formula can be seen in 22.

Fig. 22: Request Virtual Machine Formula.

5 Test 47

5 Test

I have performed a series of tests to verify the correct functionality of the proxy, proxy agent,

the web-interface interaction and the creation of virtual machines. The tests where performed

with a MiG development server, a resource and a laptop.

NR. Description Parameters

1 Virtual machine listing With no machines available

2 Virtual machine listing With one machine available

3 Virtual machine listing With more than one machine available

4 Virtual machine state When deploying

5 Virtual machine state When when booting operating system

6 Virtual machine state When displaying desktop environment

7 Virtual machine state When shutting down operating system

10 Request a virtual machine Machine does not exist

11 Request a virtual machine Machine with same name already exist

20 Get user input-able identi�er

30 Deploy virtual machine With system disk on resource

31 Deploy virtual machine With system disk from MiG server

32 Deploy virtual machine With changes to data disk

40 Connect to RDE With Java client and connection pro�le

41 Connect to RDE With external client and valid identi�er

42 Connect to RDE With external client and invalid identi�er

51 Connect to RDE With both external and Java client

52 Connect to RDE Disconnect then reconnect with Java client

53 Connect to RDE Disconnect then reconnect with external

client

54 Connect to RDE Disconnect then reconnect with Java and

external client

61 Connect to RDE With network failure in virtual machine

62 Connect to RDE With network failure in connection on

MiG server

5.1 Observations

When testing the �nal solution model it was discovered that test 61 failed, some exceptions

where not handled correctly in the proxy agent which caused it to exit ungracefully instead of

trying to reconnect to the proxy. The bug was corrected and the current solution model works

correctly to the extend that it was tested.

6 Future Work 48

6 Future Work

proxy: means for locking down the use of the proxy should added, this can be achieved by

enhancing the white-listing in the MiGTCPServer such that only connections from trusted

peers are allowed. Additionally should functionality be added for identi�er veri�cation to

prevent unauthorized use of the proxy with fake matching identi�ers.

virtual-machines: the OVF standard promises to provide solutions for mobility of virtual machines

between hypervisors with free mobility of virtual machines then MiG can much easier

utilize heterogeneous resources with di�erent hypervisors. It can provide a �rm ground for

implementing personal virtual machines.

Interface: the virtual monitor can be expanded to provide screen-shots of the desktop environ-

ment directly in the virtual monitor, doing so would provide instant status of the desktop

environment without connecting directly to the virtual machine. Such a feature can prove

useful for users who utilize the remote desktop environment for providing visual output

from simulations but who has no need for interacting with the simulation.

Perspectives for using the work in this thesis is to utilize the �exibility of the proxy design.

The only thing restricting the use of the proxy to the RFB protocol is the implementations of

fake-handshake handling. This part of the proxy code-base can be expanded with handlers for

other protocols such as HTTP, SMTP and SSH. Such an addition of handlers would provide

MiG with remote access to web-servers and interaction with SSH. The complexity of the remote

access will depend on the complexity of the protocol.

7 Conclusion 49

7 Conclusion

The initial goals of the project was to examine the requirements of providing remote access and

whether it was possible to implement a model that satis�es these requirements in MiG. Remote

access to Virtual Machines in MiG has been achieved and additionally the utilization of Virtual

Machines in MiG has been substantially improved by:

• Removing the dependency of a MiG speci�c customization of VirtualBox.

• The choice of hypervisor for virtual machines in MiG is no longer restricted to VirtualBox,

the broad suite of KVM, QEMU, Xen, VMWare Workstation, VMWare ESXi can also be

used.

Usability improvements of the web-interface has been designed and implemented with success. I

consider the changes a success since they have already been integrated into the stable release of

MiG and put into production.

Remote access has been implemented with a secure and fault tolerant middle-tier that does not

require installation of any additional software on the user or resource end. This sounds simple

but as the documentation of the design and implementation process shows many obstacles and

strict requirements had to be overcome. Existing solutions for proxying could not be reused

because of the strict rules and design criteria of MiG.

By obeying the rules and design criteria it was revealed that the management of virtual machines

could and should be removed from the user end. This was accomplished. To successfully provide

the utilization of virtual machines then an interface for this purpose had to be implemented with

focus on usability that was unseen in MiG. This was accomplished.

The section on future work describes the potential for the utilization of the proxy and proxy

agent. Hopefully the work in this project will be expanded on to provide remote interaction with

secure shell and other protocols. For now basic Virtual Desktop Computing in the Minimum

Intrusion Grid has been achieved.

List of Figures

1 The simple MiG model [8]. 8

2 Organization of layers. 10

3 FreeNX Architecture . 13

4 Initiation methods. 15

5 Proxy-based architecture. 15

6 Distribution of Fat in Solutions. 19

7 Fundamentals of the RFB protocol. 20

8 RFB Flow . 21

9 Proxy architectures. 23

10 First architecture. 28

11 Second architecture . 32

12 Connection �ow with proxy agent. 33

13 Tranformation function in Python. 35

14 Example of transformation. 35

15 Layout of users virtual machine storage. 41

16 Layout of resources image storage. 41

17 Original interface, downloads area. 44

18 Improved interface, downloads section. 44

19 Virtual Machines area of web-interface. 45

20 Machine state change. 45

21 Connected to remote desktop environment. 46

22 Request Virtual Machine Formula. 46

23 Proxy and Proxy Agent code-base. 56

24 HTTP Encapsulation. 57

25 HTTP CONNECT method. 57

26 MiP Identi�er types . 58

27 MiP message types . 58

28 MiP handshake . 58

29 MiP setup request . 58

30 MiP setup response . 58

31 Layout of build environment . 59

List of Tables

1 Firewall resource requirements. 9

2 Best �tted remote access software. 13

3 Location of changes in repository. 19

References

[1] Inc. Anonymizer. Anonymizer. http://anonymizer.com/, 02 2009. Visited 18. Feb 2009.

50

http://anonymizer.com/

7 Conclusion 51

[2] asciitable.com. Ascii table. http://www.asciitable.com/, 18 February 2009. Visited 18.

Feb 2009.

[3] Jonas Bardino. Getting started guide with MiG. http://code.google.com/p/migrid/

wiki/GettingStarted, 18 February 2009. Visited 18. Feb 2009.

[4] Jonas Bardino. MiG Interfaces. http://code.google.com/p/migrid/wiki/

MiGInterfaces, 18 February 2009. Visited 18. Feb 2009.

[5] Jonas Bardino. MiG Job Flow. http://code.google.com/p/migrid/wiki/MiGJobFlow, 18

February 2009. Visited 18. Feb 2009.

[6] Jonas Bardino. MiG Rules. http://code.google.com/p/migrid/wiki/MiGRules, 3 March

2009. Visited 3. Mar 2009.

[7] Brian Vinter. The Architecture of the Minimum intrusion Grid: MiG. In Proceedings of

Communicating Process Architectures, pages 189�201. IOS Press, 2005.

[8] Brian Vinter and Henrik Hoey Karlsen. Minimum intrusion Grid - The Simple Model. http:

//www.imada.sdu.dk/Courses/DM75/Misc/MiG_Simple_Model_ETNgrid05.pdf, 2005.

[9] Canonical. Virtual machine builder. https://launchpad.net/vmbuilder, 18 February

2009. Visited 18. Feb 2009.

[10] Chilkat. Python chilkat. http://www.chilkatsoft.com/python.asp, 02 2009. Visited 18.

Feb 2009.

[11] Tomas Groth Christensen. Migrerende virtuelle maskiner i minimum intrusion grid. Master's

thesis, Department of Computer Science, University of Copenhagen, April 2009.

[12] Virtual Box OSE Community. Forum. http://forums.virtualbox.org/viewtopic.php?

f=10&t=14948, 02 2009. Visited 18. Feb 2009.

[13] Wikipedia Community. Comet. http://en.wikipedia.org/wiki/Comet_(programming),

04 2009. Visited 19. Apr 2009.

[14] Privoxy Developers. Privoxy. http://www.privoxy.org/, 02 2009. Visited 18. Feb 2009.

[15] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion

router. In In Proceedings of the 13th USENIX Security Symposium, pages 303�320, 2004.

[16] Ian Foster. What is the Grid? A Three Point Checklist. http://www-fp.mcs.anl.gov/

~foster/Articles/WhatIsTheGrid.pdf, 2002.

[17] Ian Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-

ture, chapter 2. Morgan Kaufmann Publishers, 1998. http://www.globus.org/alliance/

publications/papers/chapter2.pdf.

[18] Apache Foundation. Apache - mod_proxy. http://httpd.apache.org/docs/2.0/mod/

mod_proxy.html, 02 2009. Visited 18. Feb 2009.

http://www.asciitable.com/
http://code.google.com/p/migrid/wiki/GettingStarted
http://code.google.com/p/migrid/wiki/GettingStarted
http://code.google.com/p/migrid/wiki/MiGInterfaces
http://code.google.com/p/migrid/wiki/MiGInterfaces
http://code.google.com/p/migrid/wiki/MiGJobFlow
http://code.google.com/p/migrid/wiki/MiGRules
http://www.imada.sdu.dk/Courses/DM75/Misc/MiG_Simple_Model_ETNgrid05.pdf
http://www.imada.sdu.dk/Courses/DM75/Misc/MiG_Simple_Model_ETNgrid05.pdf
https://launchpad.net/vmbuilder
http://www.chilkatsoft.com/python.asp
http://forums.virtualbox.org/viewtopic.php?f=10&t=14948
http://forums.virtualbox.org/viewtopic.php?f=10&t=14948
http://en.wikipedia.org/wiki/Comet_(programming)
http://www.privoxy.org/
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www.globus.org/alliance/publications/papers/chapter2.pdf
http://www.globus.org/alliance/publications/papers/chapter2.pdf
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html

7 Conclusion 52

[19] Globus. The Globus Resource Speci�cation Language RSL. http://www.globus.org/

toolkit/docs/2.4/gram/rsl_spec1.html, 18 January 2009.

[20] Network Working Group. RFC 4251. http://www.ietf.org/rfc/rfc4251.txt, 01 2006.

[21] Network Working Group. RFC 2616. http://tools.ietf.org/html/rfc2616, 04 2009.

Visited 19. Apr 2009.

[22] Network Working Group. RFC 2818. http://tools.ietf.org/html/rfc2818, 04 2009.

Visited 19. Apr 2009.

[23] Microsoft Help and Support. Understanding the Remote Desktop Protocol (RDP). http:

//support.microsoft.com/kb/186607.

[24] JSON. Website. http://www.json.org/, 04 2009. Visited 19. Apr 2009.

[25] Twisted Matrix Labs. Twisted. http://twistedmatrix.com/trac/, 18 February 2009.

Visited 18. Feb 2009.

[26] libvirt. The virtualization api. http://libvirt.org/, 18 February 2009. Visited 18. Feb

2009.

[27] libvirt the virtualization api. Website. http://libvirt.org/, 04 2009. Visited 19. Apr

2009.

[28] Redpill Linpro. Varnish. http://varnish.projects.linpro.no/, 02 2009. Visited 18. Feb

2009.

[29] Ari Luotonen. Tunneling tcp based protocols through web proxy servers. http://tools.

ietf.org/id/draft-luotonen-web-proxy-tunneling-00.txt, 01 1998.

[30] David Ascher Mark Lutz. Learning Python. O'Reilly Media, Incorporated, 3rd edition, July

2008.

[31] Alex Martelli, Anna Martelli Ravenscroft, and David Ascher. Python Cookbook. O'Reilly

Media, Incorporated, 2nd edition, March 2005.

[32] Martin. MiG sandboxes. http://www.migrid.org/MiG/Mig_english/sandboxes_html, 04

January 2008. Visited 18. Feb 2009.

[33] Sun Microsystems, VirtualBox Community, and Previously InnoTek. VirtualBox. http:

//www.virtualbox.org/, 18 February 2009. Visited 18. Feb 2009.

[34] MiG. Google Code / Project Site. http://code.google.com/p/migrid/, 02 2009. Visited

18. Feb 2009.

[35] MiG. Website. http://www.migrid.org, 02 2009. Visited 18. Feb 2009.

[36] Microsoft Developer Network. Microsoft Communication Protocols. http://msdn.

microsoft.com/en-us/library/cc216513(PROT.10).aspx, 18 February 2009.

http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html
http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html
http://www.ietf.org/rfc/rfc4251.txt
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2818
http://support.microsoft.com/kb/186607
http://support.microsoft.com/kb/186607
http://www.json.org/
http://twistedmatrix.com/trac/
http://libvirt.org/
http://libvirt.org/
http://varnish.projects.linpro.no/
http://tools.ietf.org/id/draft-luotonen-web-proxy-tunneling-00.txt
http://tools.ietf.org/id/draft-luotonen-web-proxy-tunneling-00.txt
http://www.migrid.org/MiG/Mig_english/sandboxes_html
http://www.virtualbox.org/
http://www.virtualbox.org/
http://code.google.com/p/migrid/
http://www.migrid.org
http://msdn.microsoft.com/en-us/library/cc216513(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/cc216513(PROT.10).aspx

7 Conclusion 53

[37] Microsoft Developer Network. Remote Desktop Protocol: Basic Connectivity and Graphics

Remoting Speci�cation. http://msdn.microsoft.com/en-us/library/cc240445(PROT.

10).aspx, 2 August 2009.

[38] OpenBSD. Openssh. http://www.openssh.com/, 02 2009. Visited 18. Feb 2009.

[39] The OpenSSL Project. Openssh. http://www.openssl.org/, 02 2009. Visited 18. Feb

2009.

[40] Proxify. Proxify. http://proxify.co.uk/, 02 2009. Visited 18. Feb 2009.

[41] VNC Proxy. Vnc proxy. http://vncproxy.sourceforge.net/, 02 2009. Visited 18. Feb

2009.

[42] pyOpenSSL. Python interface to the openssl library. http://pyopenssl.sourceforge.

net/, 02 2009. Visited 18. Feb 2009.

[43] Python. asyncore, asynchronous socket handler. http://docs.python.org/library/

asyncore.html, 18 February 2009. Visited 18. Feb 2009.

[44] Python. multiprocessing, process-based threading interface. http://docs.python.org/

library/multiprocessing.html, 18 February 2009. Visited 18. Feb 2009.

[45] Python. Python object sharing. http://poshmodule.sourceforge.net/, 18 February 2009.

Visited 18. Feb 2009.

[46] Python. select, waiting for io completion. http://docs.python.org/library/select.

html, 18 February 2009. Visited 18. Feb 2009.

[47] Python. Socketserver, a framework for network servers. http://docs.python.org/

library/socketserver.html, 18 February 2009. Visited 18. Feb 2009.

[48] Python. subprocess, subprocess management. http://docs.python.org/library/

subprocess.html, 18 February 2009. Visited 18. Feb 2009.

[49] Python. thread, multiple threads of control. http://docs.python.org/library/thread.

html, 18 February 2009. Visited 18. Feb 2009.

[50] Python. threading, higher-level threading interface. http://docs.python.org/library/

threading.html, 18 February 2009. Visited 18. Feb 2009.

[51] Python. Tls lite. http://trevp.net/tlslite/, 02 2009. Visited 18. Feb 2009.

[52] Python. Twisted vs threads benchmark. http://kaishaku.org/twisted-vs-threads/, 18

February 2009. Visited 18. Feb 2009.

[53] Python MeTooCrypto. M2crypto. http://chandlerproject.org/bin/view/Projects/

MeTooCrypto, 02 2009. Visited 18. Feb 2009.

[54] python-vm builder. Website. https://launchpad.net/vmbuilder, 04 2009. Visited 19.

Apr 2009.

http://msdn.microsoft.com/en-us/library/cc240445(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/cc240445(PROT.10).aspx
http://www.openssh.com/
http://www.openssl.org/
http://proxify.co.uk/
http://vncproxy.sourceforge.net/
http://pyopenssl.sourceforge.net/
http://pyopenssl.sourceforge.net/
http://docs.python.org/library/asyncore.html
http://docs.python.org/library/asyncore.html
http://docs.python.org/library/multiprocessing.html
http://docs.python.org/library/multiprocessing.html
http://poshmodule.sourceforge.net/
http://docs.python.org/library/select.html
http://docs.python.org/library/select.html
http://docs.python.org/library/socketserver.html
http://docs.python.org/library/socketserver.html
http://docs.python.org/library/subprocess.html
http://docs.python.org/library/subprocess.html
http://docs.python.org/library/thread.html
http://docs.python.org/library/thread.html
http://docs.python.org/library/threading.html
http://docs.python.org/library/threading.html
http://trevp.net/tlslite/
http://kaishaku.org/twisted-vs-threads/
http://chandlerproject.org/bin/view/Projects/MeTooCrypto
http://chandlerproject.org/bin/view/Projects/MeTooCrypto
https://launchpad.net/vmbuilder

7 Conclusion 54

[55] VNC Re�ector. Vnc re�ector. http://sourceforge.net/projects/vnc-reflector/, 02

2009. Visited 18. Feb 2009.

[56] UltraVNC Repeater. UltraVnc repeater. http://www.uvnc.com/addons/repeater.html,

02 2009. Visited 18. Feb 2009.

[57] Matteo Ricchetti. Ss5. http://ss5.sourceforge.net/, 02 2009. Visited 18. Feb 2009.

[58] Tristan Richardson, Quentin Sta�ord-fraser, Kenneth R. Wood, and Andy Hopper. Virtual

network computing. IEEE Internet Computing, 2:33�38, 1998.

[59] Constantine Sapuntzakis and Monica S. Lam. Virtual Appliances in the Collective: A Road

to Hassle-Free Computing. http://suif.stanford.edu//papers/hotos03-virtual-app.

pdf, 2003.

[60] Socksify. Socksify. http://socksify.com/, 02 2009. Visited 18. Feb 2009.

[61] Initex Software. Proxi�er. http://www.proxifier.com/, 02 2009. Visited 18. Feb 2009.

[62] Squid. Squid cache. http://www.squid-cache.org/, 02 2009. Visited 18. Feb 2009.

[63] Ananth I. Sundararaj and Peter A. Dinda. Towards Virtual Networks for Virtual Machine

Grid Computing. In Proceedings of the 3rd USENIX Virtual Machine Research And Tech-

nology Symposium (VM), pages 177�190, 2003.

[64] TeamViewer. Teamviewer. http://www.teamviewer.com/, 18 February 2009. Visited 18.

Feb 2009.

[65] RealVNC Ltd (formerly of Olivetti Research Ltd / AT&T Labs Cambridge) Tristan Richard-

son. The RFB Protocol Version 3.8. http://www.realvnc.com/docs/rfbproto.pdf, 21

April 2009.

[66] VirtualBox. Virtualbox build instructions. http://www.virtualbox.org/wiki/Build_

instructions, 18 February 2009. Visited 18. Feb 2009.

[67] VMWare. Open virtualization format. http://www.vmware.com/appliances/learn/ovf.

html, 18 February 2009. Visited 18. Feb 2009.

[68] W3C. Html 5 speci�cation - editors draft. http://dev.w3.org/html5/spec/Overview.

html#channel-messaging, 04 2009. Visited 19. Apr 2009.

[69] Wikipedia Community. Cloud Computing. http://en.wikipedia.org/wiki/Cloud_

computing, 18 February 2009.

[70] Wikipedia Community. Comparison of remote desktop software. http://en.wikipedia.

org/wiki/Comparison_of_remote_desktop_software visited, 18 February 2009.

[71] Wikipedia Community. Desktop Environment. http://en.wikipedia.org/wiki/Desktop_

environment, 18 February 2009.

[72] XML-RPC. Website. http://www.xmlrpc.com/, 04 2009. Visited 19. Apr 2009.

http://sourceforge.net/projects/vnc-reflector/
http://www.uvnc.com/addons/repeater.html
http://ss5.sourceforge.net/
http://suif.stanford.edu//papers/hotos03-virtual-app.pdf
http://suif.stanford.edu//papers/hotos03-virtual-app.pdf
http://socksify.com/
http://www.proxifier.com/
http://www.squid-cache.org/
http://www.teamviewer.com/
http://www.realvnc.com/docs/rfbproto.pdf
http://www.virtualbox.org/wiki/Build_instructions
http://www.virtualbox.org/wiki/Build_instructions
http://www.vmware.com/appliances/learn/ovf.html
http://www.vmware.com/appliances/learn/ovf.html
http://dev.w3.org/html5/spec/Overview.html#channel-messaging
http://dev.w3.org/html5/spec/Overview.html#channel-messaging
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Comparison_of_remote_desktop_software
http://en.wikipedia.org/wiki/Comparison_of_remote_desktop_software
http://en.wikipedia.org/wiki/Desktop_environment
http://en.wikipedia.org/wiki/Desktop_environment
http://www.xmlrpc.com/

7 Conclusion 55

[73] Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman. Building Internet Firewalls,

chapter 9, pages 224�239. O'Reilly & Associates, June 2000.

A Appendix 56

A Appendix

A.1 Changelogs

• http://code.google.com/p/migrid/source/detail?r=275

• http://code.google.com/p/migrid/source/detail?r=311

• http://code.google.com/p/migrid/source/detail?r=344

• http://code.google.com/p/migrid/source/detail?r=364

• http://code.google.com/p/migrid/source/detail?r=372

• http://code.google.com/p/migrid/source/detail?r=378

A.2 Proxy and Proxy Agent Code-base

Fig. 23: Proxy and Proxy Agent code-base.

A Appendix 57

A.3 HTTP Encapsulation of RFB Messages

Frame-buffer update request:

1 POST /framebufer_update_request HTTP /1.1

2 Host: proxy.migrid.org

3 User -Agent: MigProxyAgent /0.1

4 Content -Length: XX

5

6 ... RFB FRAMEBUFFER REQUEST ...

Frame-buffer update response:

1 HTTP /1.1 200 OK

2 Content -Type: text/plain

3 Content -Length: YY

4 Server: MiGProxy /0.1

5

6 ... RFB FRAMEBUFFER RESPONSE ...

Fig. 24: HTTP Encapsulation.

A.4 HTTP Connect Method Encapsulation

Client sends:

1 CONNECT proxy.migrid.org :443 HTTP /1.0

2 User -agent: MiGProxyAgent /0.1

3

4 ... data to be tunnelled TO the server ...

Server Responds:

1 HTTP /1.0 200 Connection established

2 Proxy -agent: MiGProxyServer /0.1

3

4 ... data tunnelled FROM the server ...

Fig. 25: HTTP CONNECT method.

A Appendix 58

A.5 MiG Inter-proxy Protocol (MiP) Speci�cation
Number Name

0 Proxy

1 Virtual machine

2 Resource

Fig. 26: MiP Identi�er types

Number Name

0 Handshake

1 Setup Request

2 Setup Response

Fig. 27: MiP message types

No. of bytes Type Value Description

1 U8 0 message-type

1 U8 {0,1,2} identi�er-type

4 U32 - identi�er-length

identity-length - - identi�er

Fig. 28: MiP handshake

No. of bytes Type Value Description

1 U8 1 message-type

4 U32 0-65355 ticket

4 U32 - proxy-host-length

proxy-host-length - - proxy-host

4 U32 0-65355 proxy-port

4 U32 - endpoint-host-length

endpoint-host-length - - endpoint-host

4 U32 0-65355 endpoint-port

Fig. 29: MiP setup request

No. of bytes Type Value Description

1 U8 2 message-type

4 U32 0-65355 ticket

1 U8 0-127 status

Fig. 30: MiP setup response

A Appendix 59

A.6 Integrating python-vm-builder with MIG

. / hacks

. / hacks / i n t e r f a c e s

. / boot . sh

. / l o g i n . sh

. / guest_addi t ions

. / guest_addi t ions /VBoxWindowsAdditions−amd64 . exe

. / guest_addi t ions /VBoxSolar i sAddit ions . pkg

. / guest_addi t ions /VBoxWindowsAdditions . exe

. / guest_addi t ions /VBoxLinuxAdditions−x86 . run

. / guest_addi t ions /VBoxLinuxAdditions−amd64 . run

. / guest_addi t ions /VBoxWindowsAdditions−x86 . exe

. / machine . c f g

. / machine . p a r t i t i o n

. / bundle

Fig. 31: Layout of build environment

A.7 Job Encapsulation of Virtual Machine Migration

The customized VirtualBox implemented a method MigServerImport, this is now handled by

commands in the two job descriptions below. An additional VirtualBox method MiGServerWait

monitored the execution time of the virtual machine in order to shut it down before the jobs

execution time was exceeded this is now handled by the run-time wrapper script.

A.7.1 Job Description with System Disk on MiG server

1 :: EXECUTE ::

2 rm -rf ~/. VirtualBox

3 mkdir ~/. VirtualBox

4 mkdir ~/. VirtualBox/Machines

5 mkdir ~/. VirtualBox/HardDisks

6 mv plain.vmdk ~/. VirtualBox/HardDisks/plain.vmdk

7 mv data.vmdk ~/. VirtualBox/HardDisks /+JOBID+_data.vmdk

8 VBoxManage openmedium disk +JOBID+_data.vmdk

9 VBoxManage openmedium disk plain.vmdk

10 VBoxManage createvm -name "$NAME" -register

11 VBoxManage modifyvm "$NAME" -nic1 nat

12 VBoxManage modifyvm "$NAME" -memory $MEMORY

13 VBoxManage modifyvm "$NAME" -pae on

14 VBoxManage modifyvm "$NAME" -hwvirtex on

15 VBoxManage modifyvm "$NAME" -ioapic off

16 VBoxManage modifyvm "$NAME" -hda "plain.vmdk"

17 VBoxManage modifyvm "$NAME" -hdb "+JOBID+_data.vmdk"

18 VBoxManage guestproperty set "$NAME" job_id +JOBID+

19 ./runvm.sh $NAME 780

20 VBoxManage modifyvm $NAME -hda none

21 VBoxManage modifyvm $NAME -hdb none

22 VBoxManage closemedium disk +JOBID+_data.vmdk

23 VBoxManage unregistervm $NAME -delete mv ~/. VirtualBox/HardDisks /+JOBID+_data.vmdk data.

vmdk

24

25 :: INPUTFILES ::

A Appendix 60

26 vms/$NAME/plain.vmdk plain.vmdk

27 vms/$NAME/data.vmdk data.vmdk

28

29 :: OUTPUTFILES ::

30 data.vmdk vms/$NAME/data.vmdk

31

32 :: EXECUTABLES ::

33 vms/runvm.sh runvm.sh

34

35 :: MEMORY ::

36 $MEMORY

37

38 :: CPUTIME ::

39 $CPUTIME

40

41 :: ARCHITECTURE ::

42 AMD64

43

44 ::VGRID::

45 Generic

46

47 :: NOTIFY ::

48 jabber: SETTINGS

A.7.2 Job Description with System Disk on Resource

1 :: EXECUTE ::

2 rm -rf ~/. VirtualBox

3 mkdir ~/. VirtualBox

4 mkdir ~/. VirtualBox/Machines

5 mkdir ~/. VirtualBox/HardDisks

6 cp ~/ vbox_disks/plain.vmdk ~/. VirtualBox/HardDisks/plain.vmdk

7 mv data.vmdk ~/. VirtualBox/HardDisks /+JOBID+_data.vmdk

8 VBoxManage openmedium disk +JOBID+_data.vmdk

9 VBoxManage openmedium disk plain.vmdk

10 VBoxManage createvm -name "$NAME" -register

11 VBoxManage modifyvm "$NAME" -nic1 nat

12 VBoxManage modifyvm "$NAME" -memory $MEMORY

13 VBoxManage modifyvm "$NAME" -pae on

14 VBoxManage modifyvm "$NAME" -hwvirtex on

15 VBoxManage modifyvm "$NAME" -ioapic off

16 VBoxManage modifyvm "$NAME" -hda "plain.vmdk"

17 VBoxManage modifyvm "$NAME" -hdb "+JOBID+_data.vmdk"

18 VBoxManage guestproperty set "$NAME" job_id +JOBID+

19 ./runvm.sh $NAME 780

20 VBoxManage modifyvm $NAME -hda none

21 VBoxManage modifyvm $NAME -hdb none

22 VBoxManage closemedium disk +JOBID+_data.vmdk

23 VBoxManage unregistervm $NAME -delete mv ~/. VirtualBox/HardDisks /+JOBID+_data.vmdk data.

vmdk

24

25 :: INPUTFILES ::

26 vms/$NAME/data.vmdk data.vmdk

27

28 :: OUTPUTFILES ::

29 data.vmdk vms/$NAME/data.vmdk

30

31 :: EXECUTABLES ::

32 vms/runvm.sh runvm.sh

33

A Appendix 61

34 :: MEMORY ::

35 $MEMORY

36

37 :: CPUTIME ::

38 $CPUTIME

39

40 :: ARCHITECTURE ::

41 AMD64

42

43 ::VGRID::

44 Generic

45

46 :: NOTIFY ::

47 jabber: SETTINGS

A.7.3 Run-time Wrapper

1 #!/bin/bash

2 #

3 # Script to manage the execution time of the virtual machine.

4 #

5 # Arguments:

6 # 1 = Virtual Machine Name

7 # 2 = Execution time

8 #

9 VBOX_STATE =0

10 VM_NAME=$1

11 EXEC_TIME=$2

12 VBoxHeadless -startvm "$VM_NAME" & VBOX_PID=$!

13 while [[$VBOX_STATE -eq 0 && $EXEC_TIME -gt 0]] do

14 if kill -0 $VBOX_PID # Is the process still alive?

15 then

16 VBOX_STATE =0 # Yes

17 else

18 VBOX_STATE =1 # No

19 fi

20

21 # Decrease exec time

22 ((EXEC_TIME --))

23 sleep 1

24

25 done

26 # If still running then turn it off

27 if [$VBOX_STATE -eq 0]; then

28 VBoxManage controlvm "$VM_NAME" acpipowerbutton

29 fi

30

31 echo "CP: $VBOX_PID CS: $VBOX_STATE ET: $EXEC_TIME"

A.8 Building Customized VirtualBox

This is a walk-through of the Linux build instructions. on a Lenovo Thinkpad x200 running

64bit Xubuntu 8.10.

There are some additional information on the MIG prerequisites and a lot of output which might

be useful if you want to compile VirtualBox yourself.

• Vanilla Prerequisites

A Appendix 62

1 sudo apt -get install gcc g++ bcc iasl xsltproc uuid -dev zlib1g -dev libidl -dev \

2 libsdl1.2-dev libxcursor -dev libqt3 -headers libqt3 -mt-dev \

3 libasound2 -dev libstdc ++5 libhal -dev libpulse -dev libxml2 -dev \

4 libxslt1 -dev python2.5-dev libqt4 -dev qt4 -dev -tools libcap -dev

5 sudo apt -get install ia32 -libs libc6 -dev -i386 lib32gcc1 gcc -multilib \

6 lib32stdc ++6 g++-multilib

7 sudo ln -s libX11.so.6 /usr/lib32/libX11.so

8 sudo ln -s libXTrap.so.6 /usr/lib32/libXTrap.so

9 sudo ln -s libXt.so.6 /usr/lib32/libXt.so

10 sudo ln -s libXtst.so.6 /usr/lib32/libXtst.so

11 sudo ln -s libXmu.so.6 /usr/lib32/libXmu.so

12 sudo ln -s libXext.so.6 /usr/lib32/libXext.so

• MIG Prerequisites

Grab the latest and greatest "MIGi�ed" VirtualBox unpack it and cd into it. Then install these

packages:

1 sudo apt -get install libcurl3 libcurl3 -gnutls libcurl4 -openssl -dev libbz2 -dev

• Start building

Execute the following command:

1 ./ configure --disable -hardening

This should give you an output like:

1 . / c on f i gu r e −−d i sab l e−hardening
2 Checking for environment : Determined bu i ld machine : l i nux . amd64 , t a r g e t machine :

l i nux . amd64 , OK.

3 Checking for kBuild : found , OK.

4 Checking for gcc : found ve r s i on 4 . 3 . 2 , OK.

5 Checking for as86 : found ve r s i on 0 . 1 6 . 1 7 , OK.

6 Checking for bcc : found ve r s i on 0 . 1 6 . 1 7 , OK.

7 Checking for i a s l : found ve r s i on 20061109 , OK.

8 Checking for x s l t : found , OK.

9 Checking for pthread : found , OK.

10 Checking for l ibxml2 : found ve r s i on 2 . 6 . 3 2 , OK.

11 Checking for l i b x s l t : found ve r s i on 1 . 1 . 2 4 , OK.

12 Checking for l ibIDL : found ve r s i on 0 . 8 . 1 0 , OK.

13 Checking for z l i b : found ve r s i on 1 . 2 . 3 . 3 , OK.

14 Checking for l i bpng : found ve r s i on 1 . 2 . 2 7 , OK.

15 Checking for SDL: found ve r s i on 1 . 2 . 1 2 , OK.

16 Checking for X l i b r a r i e s : found , OK.

17 Checking for Xcursor : found , OK.

18 Checking for Qt3 : found ve r s i on 3 . 3 . 8 b , OK.

19 Checking for Qt3 devtoo l s : found ve r s i on 3 . 3 . 8 b , OK.

20 Checking for Qt4 : found ve r s i on 4 . 4 . 3 , OK.

21 Checking for Qt4 devtoo l s : found ve r s i on 4 . 4 . 3 , OK.

22 Checking for python support : found ve r s i on 2 . 5 . 2 , OK.

23 Checking for stat ic s t c++ l i b r a r y : found , OK.

A Appendix 63

24 Checking for Linux ke rne l s ou r c e s : found ve r s i on 2 . 6 . 2 7 , OK.

25 Checking for ALSA: found ve r s i on 1 . 0 . 1 7 , OK.

26 Checking for PulseAudio : found ve r s i on 0 . 9 . 1 0 API ve r s i on 11 , OK.

27 Checking for l i b c ap l i b r a r y : found , OK.

28 Checking for compi ler . h : compi le r . h not found , OK.

29 Checking for 32−b i t support : OK.

30

31 Su c c e s s f u l l y generated ' /home/ s a f l /Desktop/bach/ v i r t u a l /VirtualBox −2.1 .4_OSE/

AutoConfig . kmk ' and ' /home/ s a f l /Desktop/bach/ v i r t u a l /VirtualBox −2.1 .4_OSE/env .

sh ' .

32 Source ' /home/ s a f l /Desktop/bach/ v i r t u a l /VirtualBox −2.1 .4_OSE/env . sh ' once be f o r e

you s t a r t to bu i ld VBox :

33

34 source /home/ s a f l /Desktop/bach/ v i r t u a l /VirtualBox −2.1 .4_OSE/env . sh

35 kmk

36

37 To compile the ke rne l module , do :

38

39 cd . / out/ l i nux . amd64/ r e l e a s e /bin / s r c /vboxdrv

40 make

41

42

43 +++ WARNING +++ WARNING +++ WARNING +++ WARNING +++ WARNING +++ WARNING +++

44 Hardening i s d i s ab l ed . P lease do NOT bui ld packages for d i s t r i b u t i o n with

45 d i s ab l ed hardening !

46 +++ WARNING +++ WARNING +++ WARNING +++ WARNING +++ WARNING +++ WARNING +++

47

48 Enjoy !

Your environment should now be con�gured, so you can go ahead and start compiling, the

argument -j to kmk is to specify the amount of cores in your machine. Set -j to the number of

cores in your machine + 1.

1 source /home/safl/Desktop/bach/virtual/VirtualBox -2.1.4 _OSE/env.sh

2 kmk -j3

The build took about on 14minutes on the x200, the build of the kernel module takes about 30

seconds. Build the kernel module by

1 cd out/linux.amd64/release/bin/src/

2 make sudo

3 make install

To be able to run it non-root you need to be part of the vboxusers group.

1 sudo groupadd vboxusers

2 sudo usermod -G vboxusers -a safl

Then load the kernel module

1 sudo modprobe vboxdrv

2 sudo chmod 660 /dev/vboxdrv

3 sudo chgrp vboxusers /dev/vboxdrv

Then you probably also need to disable KVM

A Appendix 64

1 sudo invoke -rc.d kvm stop

If you did not get any errors in the previous then you should now be able to run VirtualBox by:

1 cd ..

2 ./ VirtualBox &

A.9 Adding VNC to VirtualBox

A.9.1 MiGFramebu�er.h

1 /∗∗ @f i l e

2 ∗
3 ∗ Dec lara t ion o f MigFramebuffer c l a s s

4 ∗/
5 #ifndef __H_FRAMEBUFFER

6 #define __H_FRAMEBUFFER

7

8 #include <ip r t / thread . h>

9 #include <ip r t / c r i t s e c t . h>

10

11 // c l a s s MigFramebufferOverlay ;

12

13 c l a s s MigFramebuffer :

14 pub l i c IFramebuf fer

15 {

16 pub l i c :

17 MigFramebuffer (bool f Fu l l s c r e e n = f a l s e , bool fRe s i z ab l e = true , bool

fShowSDLConfig = f a l s e ,

18 bool fKeepHostRes = f a l s e , uint32_t u32FixedWidth = ~(uint32_t) 0 ,

19 uint32_t u32FixedHeight = ~(uint32_t) 0 , uint32_t u32FixedBPP = ~(

uint32_t) 0) ;

20 v i r t u a l ~MigFramebuffer () ;

21

22 NS_DECL_ISUPPORTS

23

24 STDMETHOD(COMGETTER(Width)) (ULONG ∗width) ;
25 STDMETHOD(COMGETTER(Height)) (ULONG ∗ he ight) ;
26 STDMETHOD(Lock) () ;

27 STDMETHOD(Unlock) () ;

28 STDMETHOD(COMGETTER(Address)) (BYTE ∗∗ address) ;
29 STDMETHOD(COMGETTER(Bi t sPerP ixe l)) (ULONG ∗ b i t sPe rP i x e l) ;
30 STDMETHOD(COMGETTER(BytesPerLine)) (ULONG ∗bytesPerLine) ;
31 STDMETHOD(COMGETTER(PixelFormat)) (ULONG ∗pixelFormat) ;

32 STDMETHOD(COMGETTER(UsesGuestVRAM)) (BOOL ∗usesGuestVRAM) ;

33 STDMETHOD(COMGETTER(HeightReduction)) (ULONG ∗heightReduct ion) ;

34 STDMETHOD(COMGETTER(Overlay)) (IFramebufferOver lay ∗∗ aOverlay) ;

35 STDMETHOD(COMGETTER(WinId)) (uint64_t ∗winId) ;
36

37 STDMETHOD(NotifyUpdate) (ULONG x , ULONG y ,

38 ULONG w, ULONG h , BOOL ∗ f i n i s h e d) ;
39 STDMETHOD(RequestRes ize) (ULONG aScreenId , ULONG pixelFormat , BYTE ∗vram ,

A Appendix 65

40 ULONG bi t sPerP ixe l , ULONG bytesPerLine ,

41 ULONG w, ULONG h , BOOL ∗ f i n i s h e d) ;
42 STDMETHOD(OperationSupported) (FramebufferAccelerat ionOperation_T operat ion ,

BOOL ∗ supported) ;
43 STDMETHOD(VideoModeSupported) (ULONG width , ULONG height , ULONG bpp , BOOL ∗

supported) ;

44 STDMETHOD(S o l i d F i l l) (ULONG x , ULONG y , ULONG width , ULONG height ,

45 ULONG co lor , BOOL ∗handled) ;
46 STDMETHOD(CopyScreenBits) (ULONG xDst , ULONG yDst , ULONG xSrc , ULONG ySrc ,

47 ULONG width , ULONG height , BOOL ∗handled) ;
48

49 STDMETHOD(GetVis ib leRegion) (BYTE ∗ aRectangles , ULONG aCount , ULONG ∗
aCountCopied) ;

50 STDMETHOD(SetVi s ib l eReg ion) (BYTE ∗ aRectangles , ULONG aCount) ;

51

52 // i n t e r n a l p u b l i c methods

53 bool i n i t i a l i z e d () { return mf I n i t i a l i z e d ; }

54 void r e s i z eGue s t () ;

55 void res izeSDL () ;

56 void update (int x , int y , int w, int h , bool fGues tRe la t ive) ;

57 void r epa in t () ;

58 bool g e tFu l l s c r e en () ;

59 void s e tFu l l s c r e e n (bool f Fu l l s c r e e n) ;

60 int getXOffset () ;

61 int getYOffset () ;

62 void getFul l screenGeometry (uint32_t ∗width , uint32_t ∗ he ight) ;
63 uint32_t getGuestXRes () { return mGuestXRes ; }

64 uint32_t getGuestYRes () { return mGuestYRes ; }

65 void un in i t () ;

66 void setWinId (uint64_t winId) { mWinId = winId ; }

67

68 pr i va t e :

69 /∗∗ the s d l thread ∗/
70 // RTNATIVETHREAD mSdlNativeThread ;

71 /∗∗ curren t SDL f ramebu f f e r po in t e r (a l s o i n c l u d e s screen width / h e i g h t) ∗/
72 // SDL_Surface ∗mScreen ;

73 /∗∗ f a l s e i f c ons t ruc t o r f a i l e d ∗/
74 bool m f I n i t i a l i z e d ;

75 /∗∗ maximum po s s i b l e screen width in p i x e l s (~0 = no r e s t r i c t i o n) ∗/
76 uint32_t mMaxScreenWidth ;

77 /∗∗ maximum po s s i b l e screen h e i g h t in p i x e l s (~0 = no r e s t r i c t i o n) ∗/
78 uint32_t mMaxScreenHeight ;

79 /∗∗ curren t gue s t screen width in p i x e l s ∗/
80 ULONG mGuestXRes ;

81 /∗∗ curren t gue s t screen h e i g h t in p i x e l s ∗/
82 ULONG mGuestYRes ;

83 /∗∗ f i x e d SDL screen width (~0 = not s e t) ∗/
84 uint32_t mFixedSDLWidth ;

85 /∗∗ f i x e d SDL screen h e i g h t (~0 = not s e t) ∗/
86 uint32_t mFixedSDLHeight ;

87 /∗∗ f i x e d SDL b i t s per p i x e l (~0 = not s e t) ∗/
88 uint32_t mFixedSDLBPP ;

A Appendix 66

89 /∗∗ d e f a u l t BPP ∗/
90 uint32_t mDefaultSDLBPP ;

91 /∗∗ Y o f f s e t in p i x e l s , i . e . guest−nondrawable area at the top ∗/
92 uint32_t mTopOffset ;

93 /∗∗ X o f f s e t f o r gue s t screen cen t e r ing ∗/
94 uint32_t mCenterXOffset ;

95 /∗∗ Y o f f s e t f o r gue s t screen cen t e r ing ∗/
96 uint32_t mCenterYOffset ;

97 /∗∗ f l a g whether we ' re in f u l l s c r e e n mode ∗/
98 bool mfFul l s c reen ;

99 /∗∗ f l a g wheter we keep the hos t screen r e s o l u t i o n when sw i t ch ing to

100 ∗ f u l l s c r e e n or not ∗/
101 bool mfKeepHostRes ;

102 /∗∗ f r amebu f f e r update semaphore ∗/
103 RTCRITSECT mUpdateLock ;

104 /∗∗ f l a g whether the SDL window shou ld be r e s i z a b l e ∗/
105 bool mfRes izable ;

106 /∗∗ f l a g whether we p r i n t out SDL informat ion ∗/
107 bool mfShowSDLConfig ;

108 /∗∗ handle to window where f ramebu f f e r con t ex t i s be ing drawn∗/
109 uint64_t mWinId ;

110

111 // SDL_Surface ∗mSurfVRAM;

112

113 BYTE ∗mPtrVRAM;

114 ULONG mBitsPerPixel ;

115 ULONG mBytesPerLine ;

116 ULONG mPixelFormat ;

117 BOOL mUsesGuestVRAM;

118 BOOL mfSameSizeRequested ;

119

120 /∗∗ the a p p l i c a t i o n Icon ∗/
121 // SDL_Surface ∗mWMIcon;

122 } ;

123

124

125 #ifde f he j sa

126 c l a s s MigFramebufferOverlay :

127 pub l i c IFramebufferOver lay

128 {

129 pub l i c :

130 MigFramebufferOverlay (ULONG x , ULONG y , ULONG width , ULONG height , BOOL

v i s i b l e ,

131 MigFramebuffer ∗aParent) ;
132 v i r t u a l ~MigFramebufferOverlay () ;

133

134 NS_DECL_ISUPPORTS

135

136 STDMETHOD(COMGETTER(X)) (ULONG ∗x) ;
137 STDMETHOD(COMGETTER(Y)) (ULONG ∗y) ;
138 STDMETHOD(COMGETTER(Width)) (ULONG ∗width) ;
139 STDMETHOD(COMGETTER(Height)) (ULONG ∗ he ight) ;

A Appendix 67

140 STDMETHOD(COMGETTER(V i s i b l e)) (BOOL ∗ v i s i b l e) ;
141 STDMETHOD(COMSETTER(V i s i b l e)) (BOOL v i s i b l e) ;

142 STDMETHOD(COMGETTER(Alpha)) (ULONG ∗ alpha) ;
143 STDMETHOD(COMSETTER(Alpha)) (ULONG alpha) ;

144 STDMETHOD(COMGETTER(Address)) (ULONG ∗ address) ;
145 STDMETHOD(COMGETTER(BytesPerLine)) (ULONG ∗bytesPerLine) ;
146

147 /∗ These are not used , or re turn standard va l u e s . ∗/
148 STDMETHOD(COMGETTER(Bi t sPerP ixe l)) (ULONG ∗ b i t sPe rP i x e l) ;
149 STDMETHOD(COMGETTER(PixelFormat)) (ULONG ∗pixelFormat) ;

150 STDMETHOD(COMGETTER(UsesGuestVRAM)) (BOOL ∗usesGuestVRAM) ;

151 STDMETHOD(COMGETTER(HeightReduction)) (ULONG ∗heightReduct ion) ;

152 STDMETHOD(COMGETTER(Overlay)) (IFramebufferOver lay ∗∗ aOverlay) ;

153 STDMETHOD(COMGETTER(WinId)) (ULONG64 ∗winId) ;
154

155 STDMETHOD(Lock) () ;

156 STDMETHOD(Unlock) () ;

157 STDMETHOD(Move) (ULONG x , ULONG y) ;

158 STDMETHOD(NotifyUpdate) (ULONG x , ULONG y ,

159 ULONG w, ULONG h , BOOL ∗ f i n i s h e d) ;
160 STDMETHOD(RequestRes ize) (ULONG aScreenId , ULONG pixelFormat , ULONG vram ,

161 ULONG bi t sPerP ixe l , ULONG bytesPerLine ,

162 ULONG w, ULONG h , BOOL ∗ f i n i s h e d) ;
163 STDMETHOD(OperationSupported) (FramebufferAccelerat ionOperation_T operat ion ,

164 BOOL ∗ supported) ;
165 STDMETHOD(VideoModeSupported) (ULONG width , ULONG height , ULONG bpp , BOOL ∗

supported) ;

166 STDMETHOD(S o l i d F i l l) (ULONG x , ULONG y , ULONG width , ULONG height ,

167 ULONG co lor , BOOL ∗handled) ;
168 STDMETHOD(CopyScreenBits) (ULONG xDst , ULONG yDst , ULONG xSrc , ULONG ySrc ,

169 ULONG width , ULONG height , BOOL ∗handled) ;
170

171 // i n t e r n a l p u b l i c methods

172 HRESULT i n i t () ;

173

174 pr i va t e :

175 /∗∗ Overlay X o f f s e t ∗/
176 ULONG mOverlayX ;

177 /∗∗ Overlay Y o f f s e t ∗/
178 ULONG mOverlayY ;

179 /∗∗ Overlay width ∗/
180 ULONG mOverlayWidth ;

181 /∗∗ Overlay h e i g h t ∗/
182 ULONG mOverlayHeight ;

183 /∗∗ Whether the ove r l a y i s c u r r en t l y a c t i v e ∗/
184 BOOL mOverlayVis ible ;

185 /∗∗ The parent IFramebuf fer ∗/
186 MigFramebuffer ∗mParent ;

187 /∗∗ SDL sur f a c e con ta in ing the a c t ua l f ramebu f f e r b i t s ∗/
188 SDL_Surface ∗mOverlayBits ;

189 /∗∗ Add i t i ona l SDL sur f a c e used f o r combining the f ramebu f f e r and the ove r l ay

∗/

A Appendix 68

190 SDL_Surface ∗mBlendedBits ;

191

192 } ;

193 #endif

194

195 #endif // __H_FRAMEBUFFER

A.9.2 MiGFramebu�er.cpp

1 /∗∗ @f i l e

2 ∗
3 ∗ VBox f ron t ends : VBoxSDL (s imple f ron tend based on SDL) :

4 ∗ Implementation o f MigFramebuffer (SDL f ramebu f f e r) c l a s s

5 ∗/
6 #include <VBox/com/com . h>

7 #include <VBox/com/ s t r i n g . h>

8 #include <VBox/com/Guid . h>

9 #include <VBox/com/Erro r In fo . h>

10 #include <VBox/com/EventQueue . h>

11 #include <VBox/com/VirtualBox . h>

12

13 #include <ip r t / stream . h>

14 #include <ip r t /env . h>

15

16 #ifde f RT_OS_OS2

17 # undef RT_MAX

18 // from <i p r t / cd e f s . h>

19 # define RT_MAX(Value1 , Value2) ((Value1) >= (Value2) ? (Value1) : (Value2))

20 #endif

21 #include "MigFramebuffer . h"

22

23 us ing namespace com ;

24

25 #define LOG_GROUP LOG_GROUP_GUI

26 #include <VBox/ e r r . h>

27 #include <VBox/ log . h>

28 #include <s td i o . h>

29

30 #i f de f ined (VBOX_WITH_XPCOM)

31 NS_IMPL_ISUPPORTS1_CI(MigFramebuffer , IFramebuf fer)

32 NS_DECL_CLASSINFO(MigFramebuffer)

33 //NS_IMPL_ISUPPORTS1_CI(MigFramebufferOverlay , IFramebuf ferOver lay)

34 //NS_DECL_CLASSINFO(MigFramebufferOverlay)

35 #endif

36

37 //

38 // Constructor / d e s t r u c t o r

39 //

40

41 /∗∗
42 ∗ SDL framebu f f e r cons t ruc t o r . I t i s c a l l e d from the main

43 ∗ (i . e . SDL) thread . Therefore i t i s s a f e to use SDL c a l l s

A Appendix 69

44 ∗ here .

45 ∗ @param fFu l l s c r e e n f l a g whether we s t a r t in f u l l s c r e e n mode

46 ∗ @param fRe s i z a b l e f l a g whether the SDL window shou ld be r e s i z a b l e

47 ∗ @param fShowSDLConfig f l a g whether we p r i n t out SDL s e t t i n g s

48 ∗ @param fKeepHostRes f l a g whether we sw i t ch the hos t screen r e s o l u t i o n

49 ∗ when sw i t c h ing to f u l l s c r e e n or not

50 ∗ @param iFixedWidth f i x e d SDL width (−1 means not s e t)

51 ∗ @param iFixedHe igh t f i x e d SDL he i g h t (−1 means not s e t)

52 ∗/
53 MigFramebuffer : : MigFramebuffer (bool fFu l l s c r e en , bool fRe s i zab l e , bool

fShowSDLConfig ,

54 bool fKeepHostRes , uint32_t u32FixedWidth ,

55 uint32_t u32FixedHeight , uint32_t u32FixedBPP)

56 {

57 int rc ;

58 LogFlow (("MigFramebuffer : : MigFramebuffer \n")) ;

59

60 ////mSurfVRAM = NULL;

61 mf I n i t i a l i z e d = f a l s e ;

62 mfFul l s c reen = fFu l l s c r e e n ;

63 mfKeepHostRes = fKeepHostRes ;

64 mTopOffset = 0 ;

65 mfRes izable = fRe s i z ab l e ;

66 mfShowSDLConfig = fShowSDLConfig ;

67 mFixedSDLWidth = u32FixedWidth ;

68 mFixedSDLHeight = u32FixedHeight ;

69 mFixedSDLBPP = u32FixedBPP ;

70 mDefaultSDLBPP = 32 ;

71 mCenterXOffset = 0 ;

72 mCenterYOffset = 0 ;

73 /∗ S ta r t wi th s tandard screen dimensions . ∗/
74 mGuestXRes = 640 ;

75 mGuestYRes = 480 ;

76 mPixelFormat = FramebufferPixelFormat_Opaque ;

77 mUsesGuestVRAM = FALSE;

78 mPtrVRAM = NULL;

79 mBitsPerPixel = 0 ;

80 mBytesPerLine = 0 ;

81 mfSameSizeRequested = f a l s e ;

82 //mWMIcon = NULL;

83

84 rc = RTCritSectIn i t (&mUpdateLock) ;

85 AssertMsg (rc == VINF_SUCCESS, ("Error from RTCritSectIn i t ! \ n")) ;

86

87 RTPrintf ("MIG : : Hey i was j u s t s t a r t ed ! \ n") ;

88 }

89

90 MigFramebuffer : : ~ MigFramebuffer ()

91 {

92 RTPrintf ("MIG : : Hey i was j u s t k i l l e d ! \ n") ;

93 LogFlow (("MigFramebuffer : : ~ MigFramebuffer \n")) ;

94 RTCritSectDelete(&mUpdateLock) ;

A Appendix 70

95 }

96

97 /∗∗
98 ∗ Returns the curren t f ramebu f f e r width in p i x e l s .

99 ∗
100 ∗ @returns COM s t a t u s code

101 ∗ @param width Address o f r e s u l t b u f f e r .

102 ∗/
103 STDMETHODIMP MigFramebuffer : :COMGETTER(Width) (ULONG ∗width)
104 {

105 LogFlow (("MigFramebuffer : : GetWidth\n")) ;

106 i f (! width)

107 return E_INVALIDARG;

108 ∗width = mGuestXRes ;

109 return S_OK;

110 }

111

112 /∗∗
113 ∗ Returns the curren t f ramebu f f e r h e i g h t in p i x e l s .

114 ∗
115 ∗ @returns COM s t a t u s code

116 ∗ @param he i g h t Address o f r e s u l t b u f f e r .

117 ∗/
118 STDMETHODIMP MigFramebuffer : :COMGETTER(Height) (ULONG ∗ he ight)
119 {

120 LogFlow (("MigFramebuffer : : GetHeight\n")) ;

121 i f (! he ight)

122 return E_INVALIDARG;

123 ∗ he ight = mGuestYRes ;

124 return S_OK;

125 }

126

127 /∗∗
128 ∗ Lock the f ramebu f f e r (make i t s address immutable) .

129 ∗
130 ∗ @returns COM s t a t u s code

131 ∗/
132 STDMETHODIMP MigFramebuffer : : Lock ()

133 {

134 LogFlow (("MigFramebuffer : : Lock\n")) ;

135 RTCritSectEnter(&mUpdateLock) ;

136 return S_OK;

137 }

138

139 /∗∗
140 ∗ Unlock the f ramebu f f e r .

141 ∗
142 ∗ @returns COM s t a t u s code

143 ∗/
144 STDMETHODIMP MigFramebuffer : : Unlock ()

145 {

146 LogFlow (("MigFramebuffer : : Unlock\n")) ;

A Appendix 71

147 RTCritSectLeave(&mUpdateLock) ;

148 return S_OK;

149 }

150

151 /∗∗
152 ∗ Return the f ramebu f f e r s t a r t address .

153 ∗
154 ∗ @returns COM s t a t u s code .

155 ∗ @param address Pointer to r e s u l t v a r i a b l e .

156 ∗ @TODO: implement

157 ∗/
158 STDMETHODIMP MigFramebuffer : :COMGETTER(Address) (BYTE ∗∗ address)
159 {

160 LogFlow (("MigFramebuffer : : GetAddress\n")) ;

161 i f (! address)

162 return E_INVALIDARG;

163

164 LogFlow (("VBoxSDL : : GetAddress r e tu rn ing %p\n" , ∗ address)) ;
165 return S_OK;

166 }

167

168 /∗∗
169 ∗ Return the current f ramebu f f e r co l o r depth .

170 ∗
171 ∗ @returns COM s t a t u s code

172 ∗ @param b i t sP e rP i x e l Address o f r e s u l t v a r i a b l e

173 ∗/
174 STDMETHODIMP MigFramebuffer : :COMGETTER(Bi t sPerP ixe l) (ULONG ∗ b i t sPe rP i x e l)
175 {

176 LogFlow (("MigFramebuffer : : GetBitsPerPixe l \n")) ;

177 i f (! b i t sPe rP i x e l)

178 return E_INVALIDARG;

179

180 ∗ b i t sPe rP i x e l = (ULONG) (16) ;

181 return S_OK;

182 }

183

184 /∗∗
185 ∗ Return the current f ramebu f f e r l i n e s i z e in b y t e s .

186 ∗
187 ∗ @returns COM s t a t u s code .

188 ∗ @param l i n e S i z e Address o f r e s u l t v a r i a b l e .

189 ∗/
190 STDMETHODIMP MigFramebuffer : :COMGETTER(BytesPerLine) (ULONG ∗bytesPerLine)
191 {

192 LogFlow (("MigFramebuffer : : GetBytesPerLine\n")) ;

193 i f (! bytesPerLine)

194 return E_INVALIDARG;

195

196 ∗bytesPerLine = (ULONG) (1) ;

197 return S_OK;

198 }

A Appendix 72

199

200 STDMETHODIMP MigFramebuffer : :COMGETTER(PixelFormat) (ULONG ∗pixelFormat)

201 {

202 i f (! pixelFormat)

203 return E_POINTER;

204 ∗pixelFormat = mPixelFormat ;

205 return S_OK;

206 }

207

208 STDMETHODIMP MigFramebuffer : :COMGETTER(UsesGuestVRAM) (BOOL ∗usesGuestVRAM)

209 {

210 i f (! usesGuestVRAM)

211 return E_POINTER;

212 ∗usesGuestVRAM = mUsesGuestVRAM;

213 return S_OK;

214 }

215

216 /∗∗
217 ∗ Returns by how many p i x e l s the gue s t shou ld shr ink i t s

218 ∗ v ideo mode h e i g h t va l u e s .

219 ∗
220 ∗ @returns COM s t a t u s code .

221 ∗ @param he igh tReduc t ion Address o f r e s u l t v a r i a b l e .

222 ∗/
223 STDMETHODIMP MigFramebuffer : :COMGETTER(HeightReduction) (ULONG ∗heightReduct ion)

224 {

225 i f (! he ightReduct ion)

226 return E_POINTER;

227 ∗heightReduct ion = 0 ;

228 return S_OK;

229 }

230

231 /∗∗
232 ∗ Returns a po in t e r to an alpha−b l ended ove r l ay used f o r d i s p l a y i n g s t a t u s

233 ∗ i cons above the f ramebu f f e r .

234 ∗
235 ∗ @returns COM s t a t u s code .

236 ∗ @param aOverlay The ove r l a y f ramebu f f e r .

237 ∗/
238 STDMETHODIMP MigFramebuffer : :COMGETTER(Overlay) (IFramebufferOver lay ∗∗ aOverlay)

239 {

240 i f (! aOverlay)

241 return E_POINTER;

242 /∗ Not ye t implemented ∗/
243 ∗aOverlay = 0 ;

244 return S_OK;

245 }

246

247 /∗∗
248 ∗ Returns handle o f window where f ramebu f f e r con t ex t i s be ing drawn

249 ∗
250 ∗ @returns COM s t a t u s code .

A Appendix 73

251 ∗ @param winId Handle o f a s s o c i a t e d window .

252 ∗/
253 STDMETHODIMP MigFramebuffer : :COMGETTER(WinId) (uint64_t ∗winId)
254 {

255 i f (! winId)

256 return E_POINTER;

257 ∗winId = mWinId ;

258 return S_OK;

259 }

260

261 /∗∗
262 ∗ Not i f y f ramebu f f e r o f an update .

263 ∗
264 ∗ @returns COM s t a t u s code

265 ∗ @param x Update reg ion upper l e f t corner x va lue .

266 ∗ @param y Update reg ion upper l e f t corner y va lue .

267 ∗ @param w Update reg ion width in p i x e l s .

268 ∗ @param h Update reg ion h e i g h t in p i x e l s .

269 ∗ @param f i n i s h e d Address o f output f l a g whether the update

270 ∗ cou ld be f u l l y processed in t h i s c a l l (which

271 ∗ has to re turn immediate ly) or VBox shou ld wai t

272 ∗ f o r a c a l l to the update complete API be f o r e

273 ∗ cont inu ing wi th d i s p l a y updates .

274 ∗/
275 STDMETHODIMP MigFramebuffer : : NotifyUpdate (ULONG x , ULONG y ,

276 ULONG w, ULONG h , BOOL ∗ f i n i s h e d)
277 {

278 /∗
279 ∗ The input va l u e s are in gue s t screen coord ina t e s .

280 ∗/
281 // LogFlow ((" MigFramebuffer : : Not i fyUpdate : x = %d , y = %d , w = %d , h = %d\n" ,

x , y , w, h)) ;

282 RTPrintf ("MigFramebuffer : : NotifyUpdate : x = %d , y = %d , w = %d , h = %d\n" , x ,

y , w, h) ;

283 /∗
284 ∗ The Disp lay thread can cont inue as we w i l l l o c k the f ramebu f f e r

285 ∗ from the SDL thread when we ge t to a c t u a l l y doing the update .

286 ∗/
287 i f (f i n i s h e d)

288 ∗ f i n i s h e d = TRUE;

289 return S_OK;

290 }

291

292 /∗∗
293 ∗ Request a d i s p l a y r e s i z e from the f ramebu f f e r .

294 ∗
295 ∗ @returns COM s t a t u s code .

296 ∗ @param pixe lFormat The reque s t ed p i x e l format .

297 ∗ @param vram Pointer to the gue s t VRAM bu f f e r (can be NULL) .

298 ∗ @param b i t sP e rP i x e l Color depth in b i t s .

299 ∗ @param bytesPerLine S i z e o f a s can l i n e in b y t e s .

300 ∗ @param w New d i s p l a y width in p i x e l s .

A Appendix 74

301 ∗ @param h New d i s p l a y h e i g h t in p i x e l s .

302 ∗ @param f i n i s h e d Address o f output f l a g whether the update

303 ∗ cou ld be f u l l y processed in t h i s c a l l (which

304 ∗ has to re turn immediate ly) or VBox shou ld wai t

305 ∗ f o r a l l c a l l to the r e s i z e complete API be f o r e

306 ∗ cont inu ing wi th d i s p l a y updates .

307 ∗/
308 STDMETHODIMP MigFramebuffer : : RequestRes ize (ULONG aScreenId , ULONG pixelFormat ,

BYTE ∗vram ,

309 ULONG bi t sPerP ixe l , ULONG bytesPerLine ,

310 ULONG w, ULONG h , BOOL ∗ f i n i s h e d)
311 {

312 LogFlowFunc (("w=%d , h=%d , pixelFormat=0x%08lX , vram=%p , "

313 "bpp=%d , bpl=%d\n" ,

314 w, h , pixelFormat , vram , b i t sPe rP ixe l , bytesPerLine)) ;

315 RTPrintf ("w=%d , h=%d , pixelFormat=0x%08lX , vram=%p , "

316 "bpp=%d , bpl=%d\n" ,

317 w, h , pixelFormat , vram , b i t sPe rP ixe l , bytesPerLine) ;

318

319 /∗
320 ∗ SDL does not a l l ow us to make t h i s c a l l from any o ther thread than

321 ∗ the main thread (the one which i n i t i a l i z e d the v ideo mode) . So we

322 ∗ have to send an event to the main SDL thread and t e l l VBox to wai t .

323 ∗/
324 i f (! f i n i s h e d)

325 {

326 AssertMsgFai led (("RequestRes ize r e qu i r e s the f i n i s h e d f l a g ! \ n")) ;

327 return E_FAIL;

328 }

329

330 /∗
331 ∗ Optimize the case when the gue s t has changed only the VRAM ptr

332 ∗ and the f ramebu f f e r uses the gue s t VRAM as the source bitmap .

333 ∗/
334 i f (mGuestXRes == w

335 && mGuestYRes == h

336 && mPixelFormat == pixelFormat

337 && mBitsPerPixel == b i t sPe rP ix e l

338 && mBytesPerLine == bytesPerLine

339 && mUsesGuestVRAM

340)

341 {

342 mfSameSizeRequested = true ;

343 }

344 else

345 {

346 mfSameSizeRequested = f a l s e ;

347 }

348

349 mGuestXRes = w;

350 mGuestYRes = h ;

351 mPixelFormat = pixelFormat ;

A Appendix 75

352 mPtrVRAM = vram ;

353 mBitsPerPixel = b i t sPe rP i x e l ;

354 mBytesPerLine = bytesPerLine ;

355 mUsesGuestVRAM = FALSE; /∗ ye t ∗/
356

357 /∗ we want t h i s r e que s t to be processed qu i c k l y , so y i e l d the CPU ∗/
358 RTThreadYield () ;

359

360 ∗ f i n i s h e d = f a l s e ;

361

362 return S_OK;

363 }

364

365 /∗∗
366 ∗ Returns which a c c e l e r a t i o n opera t i ons are suppor ted

367 ∗
368 ∗ @returns COM s t a t u s code

369 ∗ @param opera t ion a c c e l e r a t i o n opera t ion code

370 ∗ @supported r e s u l t

371 ∗/
372 STDMETHODIMP MigFramebuffer : : OperationSupported (FramebufferAccelerat ionOperation_T

operat ion , BOOL ∗ supported)
373 {

374 i f (! supported)

375 return E_POINTER;

376

377 ∗ supported = f a l s e ;

378

379 return S_OK;

380 }

381

382 /∗∗
383 ∗ Returns whether we l i k e the g iven v ideo mode .

384 ∗
385 ∗ @returns COM s t a t u s code

386 ∗ @param width v ideo mode width in p i x e l s

387 ∗ @param he i g h t v ideo mode h e i g h t in p i x e l s

388 ∗ @param bpp v ideo mode b i t depth in b i t s per p i x e l

389 ∗ @param suppor ted po in t e r to r e s u l t v a r i a b l e

390 ∗/
391 STDMETHODIMP MigFramebuffer : : VideoModeSupported (ULONG width , ULONG height , ULONG

bpp , BOOL ∗ supported)
392 {

393 i f (! supported)

394 return E_POINTER;

395

396 /∗ are c on s t r a i n t s s e t ? ∗/
397 i f (((mMaxScreenWidth != ~(uint32_t) 0)

398 && (width > mMaxScreenWidth))

399 | | ((mMaxScreenHeight != ~(uint32_t) 0)

400 && (he ight > mMaxScreenHeight)))

401 {

A Appendix 76

402 /∗ nope , we don ' t want t ha t (but s t i l l don ' t f r e a k out i f i t i s s e t) ∗/
403 ∗ supported = f a l s e ;

404 }

405 else

406 {

407 /∗ anyth ing w i l l do ∗/
408 ∗ supported = true ;

409 }

410 return S_OK;

411 }

412

413 STDMETHODIMP MigFramebuffer : : S o l i d F i l l (ULONG x , ULONG y , ULONG width , ULONG height

,

414 ULONG co lor , BOOL ∗handled)
415 {

416 i f (! handled)

417 return E_POINTER;

418 RTPrintf (" S o l i d F i l l : x : %d , y : %d , w: %d , h : %d , c o l o r : %d\n" , x , y , width ,

height , c o l o r) ;

419

420 return S_OK;

421 }

422

423 STDMETHODIMP MigFramebuffer : : CopyScreenBits (ULONG xDst , ULONG yDst , ULONG xSrc ,

ULONG ySrc ,

424 ULONG width , ULONG height , BOOL ∗handled)
425 {

426 i f (! handled)

427 return E_POINTER;

428 return S_OK;

429 }

430

431 STDMETHODIMP MigFramebuffer : : GetVis ib leRegion (BYTE ∗ aRectangles , ULONG aCount ,

432 ULONG ∗aCountCopied)
433 {

434 PRTRECT r e c t s = (PRTRECT) aRectang les ;

435

436 i f (! r e c t s)

437 return E_POINTER;

438

439 /// @todo

440

441 NOREF(aCount) ;

442 NOREF(aCountCopied) ;

443

444 return S_OK;

445 }

446

447 STDMETHODIMP MigFramebuffer : : Se tV i s ib l eReg ion (BYTE ∗ aRectangles , ULONG aCount)

448 {

449 PRTRECT r e c t s = (PRTRECT) aRectang les ;

450

A Appendix 77

451 i f (! r e c t s)

452 return E_POINTER;

453

454 /// @todo

455

456 NOREF(aCount) ;

457

458 return S_OK;

459 }

460

461 //

462 // In t e rna l p u b l i c methods

463 //

464

465 /∗∗
466 ∗ Method t ha t does the a c t ua l r e s i z e o f the gue s t f ramebu f f e r and

467 ∗ then changes the SDL f ramebu f f e r se tup .

468 ∗/
469 void MigFramebuffer : : r e s i z eGue s t ()

470 {

471 LogFlowFunc (("mGuestXRes : %d , mGuestYRes : %d\n" , mGuestXRes , mGuestYRes)) ;

472 AssertMsg (mSdlNativeThread == RTThreadNativeSelf () ,

473 ("Wrong thread ! SDL i s not th r ead sa f e ! \ n")) ;

474

475 uint32_t Rmask , Gmask , Bmask , Amask = 0 ;

476

477 mUsesGuestVRAM = FALSE;

478

479 /∗ p i x e l c h a r a c t e r i s t i c s . i f we don ' t suppor t the format d i r e c t l y , we w i l l

480 ∗ f a l l b a c k to the i n d i r e c t 32bpp b u f f e r (mUsesGuestVRAM w i l l remain

481 ∗ FALSE) ∗/
482 i f (mPixelFormat == FramebufferPixelFormat_FOURCC_RGB)

483 {

484 switch (mBitsPerPixel)

485 {

486 case 16 :

487 case 24 :

488 case 32 :

489 mUsesGuestVRAM = TRUE;

490 break ;

491 default :

492 /∗ the f a l l b a c k b u f f e r i s a lways 32bpp ∗/
493 mBitsPerPixel = 32 ;

494 mBytesPerLine = mGuestXRes ∗ 4 ;

495 break ;

496 }

497 }

498 else

499 {

500 /∗ the f a l l b a c k b u f f e r i s a lways RGB, 32bpp ∗/
501 mPixelFormat = FramebufferPixelFormat_FOURCC_RGB ;

502 mBitsPerPixel = 32 ;

A Appendix 78

503 mBytesPerLine = mGuestXRes ∗ 4 ;

504 }

505

506 switch (mBitsPerPixel)

507 {

508 case 16 : Rmask = 0x0000F800 ; Gmask = 0x000007E0 ; Bmask = 0x0000001F ; break

;

509 default : Rmask = 0x00FF0000 ; Gmask = 0x0000FF00 ; Bmask = 0x000000FF ; break

;

510 }

511

512 LogFlow (("VBoxSDL : : c r ea ted VRAM sur f a c e %p\n" , mSurfVRAM)) ;

513

514 }

515

516 /∗∗
517 ∗ Se t s SDL video mode . This i s independent from gues t v ideo

518 ∗ mode changes .

519 ∗
520 ∗ @remarks Must be c a l l e d from the SDL thread !

521 ∗/
522 void MigFramebuffer : : res izeSDL (void)

523 {

524 LogFlow (("VBoxSDL: res izeSDL\n")) ;

525

526 }

527

528 /∗∗
529 ∗ Update s p e c i f i e d f ramebu f f e r area . The coord ina t e s can e i t h e r be

530 ∗ r e l a t i v e to the gue s t f ramebu f f e r or r e l a t i v e to the screen .

531 ∗
532 ∗ @remarks Must be c a l l e d from the SDL thread on Linux !

533 ∗ @param x l e f t column

534 ∗ @param y top row

535 ∗ @param w width in p i x e l s

536 ∗ @param h he i g h t in p i x e l s

537 ∗ @param fGues tRe l a t i v e f l a g whether the above va l u e s are gue s t r e l a t i v e or

screen r e l a t i v e ;

538 ∗/
539 void MigFramebuffer : : update (int x , int y , int w, int h , bool fGues tRe la t ive)

540 {

541 RTPrintf ("VBoxSDL : : update : %dx %dy %dw, %dh \n" , x , y , w, h) ;

542 }

543

544 /∗∗
545 ∗ Repaint the whole f ramebu f f e r

546 ∗
547 ∗ @remarks Must be c a l l e d from the SDL thread !

548 ∗/
549 void MigFramebuffer : : r epa in t ()

550 {

551 LogFlow (("MigFramebuffer : : r epa in t \n")) ;

A Appendix 79

552 RTPrintf ("MigFramebuffer : : r epa in t \n") ;

553 // update (0 , 0 , mScreen−>w, mScreen−>h , f a l s e /∗ fGue s tRe l a t i v e ∗/) ;
554 update (0 , 0 , 0 , 0 , f a l s e /∗ fGue s tRe l a t i v e ∗/) ;
555 }

556

557 bool MigFramebuffer : : g e tFu l l s c r e en ()

558 {

559 LogFlow (("MigFramebuffer : : g e tFu l l s c r e en \n")) ;

560 return mfFul l s c reen ;

561 }

562

563 /∗∗
564 ∗ Toggle f u l l s c r e e n mode

565 ∗
566 ∗ @remarks Must be c a l l e d from the SDL thread !

567 ∗/
568 void MigFramebuffer : : s e tFu l l s c r e e n (bool f Fu l l s c r e e n)

569 {

570 LogFlow (("MigFramebuffer : : S e tFu l l s c r e en : f u l l s c r e e n : %d\n" , f Fu l l s c r e e n)) ;

571 mfFul l s c reen = fFu l l s c r e e n ;

572 }

573

574 /∗∗
575 ∗ Return the geometry o f the hos t . This i sn ' t very we l l t e s t e d but i t seems

576 ∗ to work at l e a s t on Linux ho s t s .

577 ∗/
578 void MigFramebuffer : : getFul l screenGeometry (uint32_t ∗width , uint32_t ∗ he ight)
579 {

580

581

582 }

583

584 /∗∗
585 ∗ Returns the curren t x o f f s e t o f the s t a r t o f the gue s t screen

586 ∗
587 ∗ @returns current x o f f s e t in p i x e l s

588 ∗/
589 int MigFramebuffer : : getXOffset ()

590 {

591 /∗ t h e r e can only be an o f f s e t f o r c en t e r ing ∗/
592 return mCenterXOffset ;

593 }

594

595 /∗∗
596 ∗ Returns the curren t y o f f s e t o f the s t a r t o f the gue s t screen

597 ∗
598 ∗ @returns current y o f f s e t in p i x e l s

599 ∗/
600 int MigFramebuffer : : getYOffset ()

601 {

602 /∗ we might have a top o f f s e t and a cen ter o f f s e t ∗/
603 return mTopOffset + mCenterYOffset ;

A Appendix 80

604 }

605

606 /∗∗
607 ∗ Terminate SDL

608 ∗
609 ∗ @remarks must be c a l l e d from the SDL thread !

610 ∗/
611 void MigFramebuffer : : un in i t ()

612 {

613

614 }

	Introduction
	Problem Definition
	Related Work
	Delimitation
	Source and Documentation
	Terminology

	Analysis and Requirements Specification
	Minimum Intrusion Grid
	Rules
	Users
	MiG Servers
	Resources
	Virtual Machines
	Summary

	Protocols and Software
	Protocol
	Embedding Remote Access
	Software Comparison
	Summary

	Architecture
	Summary

	Requirements Specification

	Solution Model
	Implementation Overview
	Summary

	Design and Implementation
	Initial Research and Experiments
	RFB vs VNC
	Embedding RFB into VirtualBox
	Proxying
	Existing Proxies
	Sockets and Asynchrony
	Summary

	First Iteration Proxy Design
	Proxy Awareness by Packet Inspection
	Anonymization
	Implementation
	Issues

	Second Iteration Proxy Design
	Proxy Agent and Protocol
	Proxy Awareness Revisited

	Third Iteration Proxy Design
	Firewall Compliance
	Sockets and Asynchrony Revisited
	Client Software
	Summary

	Virtual Machines in MiG
	Hypervisor Dependency and Migration Issues
	Transfer Times and Virtual Machine Management
	Operating System Dependency / Introducing Virtual Machine Builders

	Interface
	Usability Enhancements
	Remote Access
	Request Virtual Machine

	Test
	Observations

	Future Work
	Conclusion
	References
	Appendix
	Changelogs
	Proxy and Proxy Agent Code-base
	HTTP Encapsulation of RFB Messages
	HTTP Connect Method Encapsulation
	MiG Inter-proxy Protocol (MiP) Specification
	Integrating python-vm-builder with MIG
	Job Encapsulation of Virtual Machine Migration
	Job Description with System Disk on MiG server
	Job Description with System Disk on Resource
	Run-time Wrapper

	Building Customized VirtualBox
	Adding VNC to VirtualBox
	MiGFramebuffer.h
	MiGFramebuffer.cpp

