
jsVNC - A Case Study of Engineering Cloud-Based NetworkAppliationsSimon Andreas Frimann LundJune 4, 2010Contents1 Introdution 31.1 Terminology . 41.2 Related Work . 42 Analysis 42.1 VNC Appliation . 42.2 Infrastrutural Challenges and Browser Limitations . 62.3 Tehniques . 62.3.1 Initiate Retrieval . 72.3.2 Server Push . 72.4 Tehnique Implementations . 72.4.1 Bayeux . 82.4.2 BOSH . 82.5 Wire Protools . 82.5.1 WebSokets . 82.6 Seurity Conerns . 92.7 Frame-bu�er Rendering . 92.8 Conlusion . 93 Arhiteture & Design 104 Implementation 114.1 Hobs . 114.1.1 Session Creation . 114.1.2 Server to Client Messages . 124.1.3 Client to Server Messages . 124.2 jsVNC . 134.3 MIFCHO . 144.4 MIFCHO Protool . 164.4.1 Handshake . 164.4.2 Tunnel Setup Request and Response . 164.5 Using MIFCHO . 175 Experiments 185.1 Results . 186 Conlusion 206.1 Future Work . 20Referenes 21A MIFCHO Con�guration Example 22B Message Samples 22B.1 Hobs Session Creation . 22B.2 Hobs Sending Message . 221

B.3 Hobs Reeiving Message . 23B.4 WebSoket Initialization . 23B.5 WebSoket Send . 23C Physial Medium 24C.1 Online . 24

2

AbstratCloud omputing provides a means forseamlessly making omputing resoures avail-able as a servie, on-demand, everywhere. Thework in this paper studies the engineering hal-lenges of making a VNC lient available as aservie, on-demand in an Internet-browser.A VNC lient has been engineered and mid-dleware has been implemented whih enapsu-lates the infrastrutural hallenges of providingloud-based network appliations.Experiments show promising results thatit is possible to engineer network appliationsin the browser whih require high through-put and low lateny. Experiments howeveralso show that the prie of loud-based VNClient is paid with signi�antly higher CPU uti-lization, memory onsumption and bandwidthonsumption than a traditional VNC lient.1 IntrodutionInternet-browsers support the paradigm of loud om-puting. In loud omputing the goal is to provide om-puting resoures as a servie, on-demand via the Inter-net. Internet-browsers failitate the loud-omputingparadigm of providing a means for on-demand deliveryof appliations via the Internet without requiring anyfurther installation or maintenane of software on theusers devie.Browser-based appliations has multiple advan-tages that makes them more attrative than traditionalappliations to both appliation-users and appliation-developers. They an be aessed from any devieavailable to the user as long as the devie has an Inter-net browser. This an be their laptop, smart phone ora devie the user an borrow suh as a library PC or afriends omputing devie.A browser-based appliation onsists of HTML,CSS and JavaSript. HTML and CSS are used todelaratively de�ne the graphial presentation of theappliation and JavaSript is used to de�ne the atualappliation-logi. Popular browser-based appliationsfor appliation-domains suh as mail-lients (Hotmail,G-Mail), soial networking (Faebook, LinkedIn) andmany others exists.Browser-based appliations however do not exist forall appliation-domains sine tehnial limitations ofInternet-browsers hinders them. Appliations requir-ing e�ient manipulation of 2D or 3D graphis, orlow-level network ommuniation. Suh appliation-domains inlude games, Computer-Assisted-Designand network-lients.The Internet-browser was not designed to handlethese appliation-domains but sine the browser is afailitator for the loud omputing paradigm of ap-pliations as a servie provides a strong inentive forpushing the boundaries of whih appliation-domainsthe browser should handle.One approah to pushing the boundaries is to ex-pand the apabilities of the browser by using third-party plug-ins. Suh plug-in tehnology inlude Java

Runtime Environments, Flash, AtiveX omponents,Mirosoft Silverlight and others. The third-party plug-in must be installed and maintained on the users de-vie whih is a ompromise of the loud omputingideal of being able to seamlessly provide appliationsas a servie. Another aspet of third-party plug-insare that the plug-ins an be proprietary and on�itwith distribution liensing of the many di�erent poten-tial platforms. A seurity aspet of third-party plug-ins are that they provide additional attak-vetors forremote-ode exeution. Sine third-party plug-ins pro-vide additional aess to loal res soures they are alsovulnerable to exposing loal res soures when exploited.Another approah to expanding the apabilities ofbrowser-based appliations are to expand the apabil-ities o�ered by the browsers themselves and to strethand ombine urrent apabilities of the browser in newways to ahieve the desired funtionality. By doingso the design goal of being able to seamlessly provideappliations as a servie an be maintained.The work in this report fouses on using the lat-ter approah in an e�ort to engineer a browser-basedVNC-lient, named jsVNC (JavaSript VNC). A VNClient is not well-suited to be run in an Internet-browsersine it requires an e�ient way to render a frame-bu�er on the lients devie and it needs to ommu-niate with a VNC server over TCP. An analysis isprovided in setion 2 on how urrent Internet-browserapabilities and urrent work-in-progress on expand-ing Internet-browser apabilities an be ombined toobtain the funtionality needed for the engineering ofjsVNC.Engineering the browser-based appliation is how-ever not the only hallenge in engineering a loud-basednetwork appliation. The browser is only a failitatorfor providing the lient-side appliation as a servie tothe user. For a network lient to be usable it must beable to ontat the orresponding server, establishingend to end onnetions on the Internet is non-trivial.The Internet onsists of many hosts diretly onnetedto the Internet with a publi IP-address establishingonnetions to suh hosts are trivial, the problem per-sists in the many hosts on private networks onnet tothe Internet but not aessible from the Internet due to�rewall restritions and network address translators.Existing tools and appliations suites exist that anbe on�gured and ombined to solve suh issues butdoing so an be omplex. The work in this paper do-uments a MIddleware For Connetion Handling andOrhestration (MIFCHO) uni�es the onnetivity andprotool translation issues for loud-based networkingappliations in a simple solution.The rest of the report is strutured as follows. Se-tion 1.1 desribes the terminology used in this report.Setion 1.2 desribes the essential di�erenes betweenjsVNC/MIFCHO and similar VNC-lients and middle-ware solutions. As previously mentioned then setion2 analyzes the possibilities and hallenges with urrenttehnology. Setion 3 desribes the arhiteture anddesign of jsVNC and MIFCHO. Setion 4 desribes theimplementation of jsVNC and MIFCHO. In setion 53

the performane of jsVNC is evaluated and omparedto a traditional VNC-lient, the setion also disuss theresults of the experiments. Lastly a onlusion on thework in this report is provided in setion 6.1.1 TerminologyWhen referring to browser, Internet-browsers suh asInternet Explorer, Firefox, Google Chrome, Opera isthe programs referred to.When mentioning modern browsers, these are ref-erenes to browsers that support the HTML5 anvastag.1.2 Related WorkThe work doumented in this report an be separatedinto three major problem areas. The �rst is the a-tual implementation of the VNC-lient in JavaSript.Seond is the lient-side libraries and protool imple-mented to emulate bidiretional ommuniation andthird is the implementation of the middleware that sup-ports the lient-side ode.jsVNC is foused on not having any third-partyrequirements and to funtion in a strit browser en-vironment. Other approahes implement the entireVNC-lient as a third party omponent, suh ap-proahes inlude: TightVNC Java-Viewer[16℄(Java)and FlashLight-VNC[4℄(Flash). Another approah isto write the VNC lient in JavaSript but rely on third-party omponents via a bridging tehnique to enablesoket ommuniation in JavaSript. Bridging teh-niques inlude [8℄(Flash) or [22℄(Java).jsVNC is more losely related to the two projetsCARDE[3℄ and Guaamole [21℄. Both of these projetsare like jsVNC implemented entirely in JavaSriptwithout relying on any third-party plug-ins.CARDE however relies on the work-in-progressof browser-based WebSokets[19℄. jsVNC also utilizeWebSokets when available but also implement an em-ulation of WebSokets named Hobs whih is used asa fail-over in ase the browser does not support Web-Sokets.jsVNC, CARDE and Guaamole all di�erentiatein how they enapsulate protool messages of theRFB protool. CARDE uses a JSON-RFB enapsu-lation, Guaamole uses an XML-RFB enapsulationand jsVNC does not use any enapsulation. jsVNCdoes not use any enapsulation sine whih minimizesmessage enoding and deoding overhead.To support abstrat ommuniation in the jsVNCimplementation a ommuniation library named HOBShas been implemented. It implements a ommunia-tion protool similar in tehnique to BOSH[7℄. TheMIFCHO middleware that translates HOBS and Web-Sokets and aids lient-server onnetivity is related infuntionality to Kaazing Gateway[9℄ and Orbited[12℄.It however also has an additional feature to support a-ess to �rewalled resoures similarly to Google SDC[6℄.MIFCHO uni�es solutions to the di�erent onnetiv-ity hallenges of browser-based appliations in a loud

ontext.2 AnalysisThe starting point for the analysis is to determine theapabilities required for a VNC lient. To unoverthis an in-depth analysis of the VNC appliation isprovided in setion 2.1. In the sueeding subsetionthe infrastrutural hallenges of loud-based networkappliations are analyzed and the limitations of theInternet-browser are desribed.Di�erent tehniques to overoming limitations andimplementations thereof are desribed in subsetions2.3 and 2.4.At the end of this setion the di�erent hallenges areonluded upon and a reommandation for a solution-model is provided whih is used for the basis of thearhiteture, design and implementation.2.1 VNC AppliationVirtual Network Computing (VNC) is an appliationthat provides the display of and interation with, aremote omputer over a network. It does so by us-ing lient-server based ommuniation where the serversends display-output to the lient and the lient sendsmouse and keyboard input to the server.Historially VNC was invented at Olivetti Re-searh Labs and was based on the Remote Frame-Bu�er (RFB[17℄) protool, urrently VNC and RFBare o�ially maintained by a ompany named Re-alVNC. Many VNC/RFB implementations has beenengineered by others than the original reators and ur-rent maintainers. Both proprietary and open-soureimplementations exist with non-standardized exten-sions to the original protool. O�ering more featuressuh as �le-transfer[15℄[18℄. Even the o�ial maintain-ers of the RFB protool provide proprietary VNC im-plementations.A VNC implementation named TigerVNC[14℄ hasa high fous on improving the performane of VNCand also provide a ommunity maintained RFB spe-i�ation as an alternative to the o�ial spei�ation.The ontribution of the ommunity maintained spei�-ation is that it attempts to doument and unify third-party protool extensions. Alternatives to VNC/RFBare among others NomahineNX[11℄/FreeNX[1℄ andRemote Desktop (RDP[10℄).Engineering all funtionality of the ommunitymaintained RFB spei�ation is however out of sopefor this projet. Sine fous of this projet is on thehallenges of engineering browser-based network appli-ations and not with hallenges of optimizing the VNCappliation features and performane. It is howeverworth noting for future work that a doumentation formany protool extensions exists suh that it an beused in the further development of jsVNC.The most essential messages (illustrated in �gure 1)are frameBu�erUpdateRequest, keyEvent, pointerEventsend from the lient and frameBu�erUpdate send from4

the server. The essential idea of VNC/RFB is to sendthe display of the server to the lient in the form ofa frameBu�erUpdate where the data representing thedisplay is enoded with one of the enodings supportedby both the VNC lient and server. During a hand-shake phase the server sends a set of supported en-odings to the lient and the lient an hoose to senda subset of the enodings to the server to inform theserver of whih enodings the lient supports. Theserver is not allowed to send updates with an enodingthat the lient has not expliitly informed the serverthat he supports. The RAW enoding however mustbe supported by a valid VNC lient and server, theother enodings are optional.FrameBu�erUpdates with RAW enoding sendsdisplay data as a BGRA-bitmap suh a representationrequires high throughput apabilities of the underlyingnetwork.

Figure 1: Essential messages of VNC/RFB.
In table 1 an overview of the sizes of framebu�erUp-dates is given in megabytes and in table 2 and overviewof the theoretial maximum amount of frameBu�erUp-dates per seond is provided. The updates are updatesof the entire display where the display has a resolutionas desribed in the head of the table and a olor-depthof 4byte per pixel. The tables gives an indiation as towhat ould be theoretially possible or impossible usesof a VNC-lient with RAW enoding.If the VNC-lient aesses a VNC-server play-ing a video then this would require a frame-rate ofabout 25fps for stutter-free playbak. Playbak ofHIGH-de�nition video is thus theoretially impossi-ble. Low-resolution video might be possible when high-throughput interonnets are available.

480x320 800x480 1024x768 1920x1200MB 0.585 1.831 3 8.789Table 1: Size of a single frame-bu�er update with RAWenoding.Mb/S 480x320 800x480 1024x768 1920x12001 0.21 0.09 0.04 0.0110 2.13 0.85 0.42 0.14100 21.33 8.53 4.17 1.421000 218.45 87.38 42.67 14.56Table 2: Theoretial maximum amount of frame-bu�erupdates per seond with RAW enoding.Due to these high throughput requirements of RAWenoding it might seem that VNC with RAW enod-ing is useless on the Internet where interonnets anbe as slow 1-2Mbit. The general use of desktop doeshowever have muh lower requirements to the rate ofupdates and an even for many updates settle with onlyupdating small parts of the frame-bu�er or re-use ex-isting parts of the frame-bu�er that the lient alreadyhave. The RFB protool therefore support inrementalframe-bu�er updates whih only send a sub-retangleof the display to the lient and by using the CopyRetenoding the server an instrut the lient to opy aretangle of the frame-bu�er to di�erent oordinates.Suh uses makes VNC viable on low-throughput in-teronnets for uses suh as text-editing, mail-reading,�le-browser and other ommon tasks.Another aspet of the protool design is that it isasynhronous in message delivery. This might seemounter-intuitive by the frameBu�erUpdateRequestand orresponding response in form of a frameBu�er-Update. And it e�etively means that a lient send-ing a frameBu�erUpdateRequest should not expet aframeBu�erUpdate to arrive on the wire immediatelyafter. The sending of framebu�erUpdates is regulatedby the server and the server hooses when to send theframeBu�erUpdate message. Additionally the amountof framebu�erUpdates send by the server is less thanor equal to the amount of frameBu�erUpdateRequests.This protool property is however quite essential forthe implementation of a VNC lient, the lient mustdeide upon a sheme for requesting updates and takeinto onsideration the throughput requirements whendeiding upon a polling sheme for the frameBu�erUp-dateRequests. The engineering of jsVNC is foused onimplementing the most essential messaging of the RFBprotool to summarize this involves an appliation a-pable of performing the following:Deode the retangle-enodings of the frameBu�er-Update messages.Render the deoded retangles on the loal displayand opy an area of the frame-bu�er to di�erentoordinates.Grab loal mouse input and transform them intopointerEvent messages.5

Grab loal keyboard and transform keystrokes tokeyEvent messages.FrameBu�erSheme Implement a sensible shemefor sending frameBu�erUpdateRequests.How jsVNC handles the above tasks are desribed insetion 4.2. In the following setions the apabilitiesof Internet-browsers to enable the exhange of RFBprotool messages are disussed.2.2 Infrastrutural Challenges andBrowser LimitationsAs desribed in the previous setion then VNC/RFB isa network based appliation and the RFB protool setsup some requirements to the throughput apabilities ofthe interonnets. In addition to the requirements in-dued by the VNC appliation itself then three essen-tial hallenges for engineering a loud-based networkappliation are:Deployment In the ideal of loud omputing thenjsVNC should be provided as a servie on-demand, this poses some infrastrutural hal-lenges whih are dependent on the arhiteturalhoies whih is desribed in further detail in se-tion 3 and setion 4.Connetion-Establishment Cloud omputing isbased on ommuniation over the Internet, theInternet provides a wide range of hosts identi�edby publi IP-addresses whih a lient an onnetto diretly. The Internet however also failitateonnetivity with other networks where the hostsin the network do not have publi IP-addressesbut are onneted to the Internet via a gatewayand are therefore not diretly available from theInternet. jsVNC should able to onnet to anyhost on the Internet and any host on a di�erentnetwork whih is somehow onneted to the In-ternet. How onnetion-establishment is solvedis desribed in further detail in setion 3 and se-tion 4.Browser-Limitations The last essential hallenge isthat a VNC/RFB lient needs a reliable trans-port protool suh as TCP to exhange messageswith the VNC server. Internet-browsers howeverdo not provide aess to low-level ommunia-tion primitives suh as sokets via JavaSript.The remainder of this setion addresses thisproblem and desribes the ommuniation prim-itives available in JavaSript and di�erent teh-niques and implementations of tehniques whihan potentially be used to emulate sokets inJavaSript.Browser does not provide low-level aess to a soketAPI but they do provide di�erent means for net-work ommuniation based on the HTTP protoolvia JavaSript. Sine RFB and HTTP are bothappliation-level protools an initial idea is to �nd out

if the two protools have enough similar harateris-tis suh that HTTP ould be used to diretly emulateRFB by parsing the semanti meaning of HTTP mes-sages di�erently. An example of this idea is to emulatean RFB pointerEvent message in HTTP as illustratedin �gure 2.HTTP is a stateless protool and the RFB proto-ol spei�ation desribes RFB as being stateless. Thestate referred to in the RFB spei�ation is the stateof the display on the remote sreen, not of the proto-ol. The protool itself is stateful and several messagesare send between lient and server in the handshakeand initialization phase prior to sending frame-bu�eroutput.1 POST /pointerEvent HTTP/1 .12 . . .3 http−headers4 . . .56 button−mask : 000000007 x : 1238 y : 321Figure 2: Diret emulation of a RFB pointerEvent withHTTP.Another more pressing inompatibility is that theHTTP protool is based on a synhronous request/re-sponse messages. The lient sends a HTTP Request tothe server and the server then sends a HTTP Responsebak to the lient. The HTTP Server is only apable ofsending data to the lient in the response to HTTP Re-quest, HTTP is in this sense one-way ommuniation.This poses a on�it with RFB protool whih is asyn-hronous and it must be able to reeive messages fromthe server when data is available suh as framebu�er-Updates and serverCutText messages, RFB requiresbidiretional asynhronous ommuniation. It there-fore does not seem feasible to diretly emulate RFB byapplying a di�erent semanti meaning to HTTP mes-sages. Another approah to establishing bidiretionalommuniation must thus be found.In the following setions two di�erent approahes toobtaining bidiretional ommuniation are desribed.One approah is based on using di�erent tehniquesto emulate asynhronous bidiretional ommuniationbased on synhronous HTTP. The other approah isbased on urrent work in progress of standardizinga browser-supported ommuniation protool enablingbidiretional ommuniation.2.3 TehniquesAs previously desribed then the urrently availablemethods of ommuniation is based on the synhronousHTTP request/response messages. When a page isloaded in the browser it is retrieved by a HTTP re-quest and all resoures in the retrieved doument isretrieved by further HTTP requests.To improve the loading time of a page browsers usea ombination of HTTP-pipe-lining and utilizing mul-6

tiple underlying TCP onnetions. With HTTP-pipe-ling a lient sends multiple HTTP requests before wait-ing for the orresponding responses. The advantage ofHTTP-pipe lining is that the server an proess mul-tiple requests onurrently it must however still returnHTTP responses in the same order as the orrespond-ing requests were reeived. The browser an use mul-tiple underlying TCP onnetions to partition the setof the HTTP requests, the amount of underlying TCPonnetions is implementation spei� but has histori-ally been limited to two onnetions per domain, morereently this limit has been inreased to six underlyingTCP onnetions.The problem is that one the browser has retrievedthe urrent doument and resoures referred to withinthe doument then the server will not send anymoredata to the lient.The tehniques for initiating retrieving data afterthe page is �nished loading are two-part they use somemethod to provoke a HTTP request and they utilizefeatures of the HTTP protool to avoid polling for databut instead let the server push data to the lient whendata beomes available.2.3.1 Initiate RetrievalThe tehniques for retrieving data from the serverevolve around using JavaSript to dynamially add ele-ments to the urrent doument by expanding the Do-ument Objet Model (DOM). The element added mustas a side-e�et require the retrieval of a resoure. Thisan be aomplished by adding an IFRAME to theDOM whih will result in a HTTP GET request tothe URL in the IFRAME's SRC tag. The retrieveddoument will then ontain a piee of JavaSript odethat will be exeuted upon retrieval. It is a bit moreinvolved to send data to the server using this methodbut it an be aomplished by expanding the DOMwith a IFRAME ontaining a FORM element, popu-late the FORM with the data that one wants to sendand submitting the form.Another approah is to use the XML HTTP Re-quests (XHR), XHR support asynhronous exeutionof HTTP request by providing a simple interfae foronstruting requests, sending them and binding event-listeners for responses.2.3.2 Server PushWhen a tehnique for performing HTTP-requests ishosen a tehnique for enabling the server to push datato the lient instead of foring the lient to poll for datamust be deided upon. Two di�erent tehniques re-ferred to as Hanging Get / Long Polling and the otherHTTP Streaming an be used.Long Polling involves reating a loop of HTTP re-quests and letting the server wait with sending it's re-sponse until it has data ready. This is essentially still apolling method but with a poll yle that mathes withdata being available. The lear advantage is that nounneessary requests are invoked. There is however a

pratial limitation as to how long the poll yle an beallowed to wait. Sine the normal behavior of a HTTPrequest/response is that the server will start sendingthe response as soon as it has reeived the lient re-quest, when intermediaries suh as HTTP proxies seesa HTTP response not sending any data they an hooseto lose the onnetion based on a timeout parameter.When using the long poll method it is thus a good pra-tie to negotiate a yle timeout value whih is lowerthan the most ommon HTTP proxies. By doing sothe Long Poll will simply send an empty response andthe yle will exeute another Long Poll.The HTTP Streaming approah utilizes HTTPChunked enoding. A Regular HTTP response sendsdata to the lient by adding a ontent-length headerdesribing the length of response-body. With Chunkedenoding the ontent-length header is skipped and theresponse body is send in hunks. Where eah hunk ispre�xed with a textual length indiator. The intentionof hunked enoding is to support sending responseswhere the total size of the response is unknown, butit is intended to send �nite length responses. There-fore the hunked-enoding has a way to indiate thaturrent hunk is the �nal hunk. It is therefore not atrue data stream of in�nite length as the name HTTPStreaming indiates but it an be emulated to behaveas an in�nite stream by never sending the �nal hunk.There are many advantages to the HTTP Stream-ing vs Long Polling, it an be used for both GET andPOST requests, whih means that it an be used toemulate a stream from both server to lient and alsofrom lient to server. There is also a muh smaller over-head for eah message send with hunked enoding, theonly overhead is the hunk-size indiator where LongPolling has to ship the entire HTTP request-line andheaders for eah payload.HTTP Streaming however has a big disadvantagethat intermediaries suh as proxies are likely to alterlengths of hunks and bu�er hunks until they see the�nal hunk indiation or until an output bu�er is �lled.Even when no proxies interfere with hunked enod-ing then browsers an behave in the same manner,suh that instead of pushing small amounts of bytesto the browser for rendering. Instead they wait un-til there a bu�er-threshold is exeeded. Suh behav-ior is ritial for many networking appliations thatsend many small messages during handshaking/initial-ization phases suh as the RFB protool.2.4 Tehnique ImplementationsAn umbrella term omet has been proposed by softwareengineer Alex Russel[13℄ for identifying the previouslydesribed tehniques. Multiple di�erent implementa-tions of the omet-tehniques exists with varying de-gree of generality and appliability. Two approahesstand out: Bayeux and BOSH[7℄.Bayeux is protool spei�ation for omet-basedommuniation with a wide variety of supported im-plementations. BOSH is a standardization of bidire-tional ommuniation using synhronous HTTP, it has7

been developed by XMPP primarily for use with theirhat program Jabber sine they needed a way to reatebrowser-based lients and also to have a way to tunneltheir other protools over HTTP for �rewall traversal.2.4.1 BayeuxBayeux o�ers a higher-level ommuniation proto-ol related to the publish / subsribe ommuniationparadigm. It provides a means for web-appliation de-velopers to implement appliations using the semantisof publishing and subsribing events and abstrats allthe lower-level issues of the omet tehniques.A message in Bayeux is spei�ed in JSON and has aset of reserved �elds (hannel, lientId, id, data, advie,ext, suessful, error) of whih only the �eld hannelis mandatory. An example of the spei�ation of aBayeux message is provided in �gure x.1 {2 hannel : "/a/ hannel " ,3 data : "Message payload /Arb i t ra ry Objet "4 } Figure 3: Example of Bayeux Message.The hannel �eld de�nes a ommuniation-hannel between lient and server, speial meta-hannels exists for performing protool hand-shake(/meta/handshake), event subsription/unsub-sription (/meta/subsribe|unsubsribe).Bayeux is very well-suited for implementing newappliations in browser ompatible with the publish /subsribe paradigm. Bayeux is maturing and is sup-ported by Java servers suh as Jetty.2.4.2 BOSHWhere Bayeux de�nes a higher-level publish/subsribeprotool BOSH attempts to stay low-level and insteademulate the semantis of a regular long-lived TCP-onnetion based on an e�ient use of multiple syn-hronous HTTP request/response pairs without the re-lying on hunked responses.Where the Bayeux protool supports many di�erentComet-based transports BOSH fouses only on LongPolling and using spei� utilization of Long Pollingdesribed as the BOSH Tehnique.Messages in BOSH are not wrapped in JSON aswith Bayeux but wrapped in HTML <body /> ele-ments where the attributes of the element are message�elds. An example from the BOSH protool spei�a-tion is provided in �gure 4.BOSH has some very strong requirementswhih make it usable in environments suh asmobile/browser-based lients, ompatibility with prox-ies that bu�er partial responses, bakwards ompati-bility with HTTP/1.0, usable in environments whereaess to HTTP-headers is denied and many others.

1 POST /web l i ent2 HTTP/1 .13 Host : httpm . jabber . org4 Aept−Enoding : gzip , d e f l a t e5 Content−Type : t ext /xml ; ha r s e t=utf−86 Content−Length : 10478 <body ontent=' text /xml ; ha r s e t=utf−8 '9 hold=' 1 '10 r i d=' 1573741820 '11 to=' jabber . org '12 route='xmpp: jabber . org :9999 '13 ver=' 1 .6 '14 wait=' 60 '15 ak=' 1 '16 xml : lang=' en '17 xmlns=' http :// jabber . org / p r o t o o l / httpbind '/>Figure 4: Example of a BOSH message.2.5 Wire ProtoolsThe previously mentioned tehniques and implementa-tions thereof have ome into existene due the the fatthat browser are not apable of performing ommu-niation in the way that web-developers need modernweb-appliations to ommuniate. The above are oneapproah to solving the problem of missing ommu-niation another approah is to expand the browsersapabilities.2.5.1 WebSoketsThe protool is a simple text-oriented frame-based pro-tool, onnetion setup is initially done by the lientsending an initial handshake message ompatible withHTTP. WebSokets are not like raw TCP based sok-ets, TCP based sokets supports streaming where Web-Sokets are frame-based. Eah frame/message send ona WebSoket has an initial frame-type header followedby the payload and depending on the frame-type alsoa end-of-message harater.The frames in the WebSoket-protool losely re-sembles the type of ommuniation made available byusing hunked-enoding on HTTP requests. WebSok-ets however has two lear advantages to the ChunkedEnoding tehnique, they are truly full-duplex requir-ing only one soket for sending and reeiving. AlsoWebSokets are a standards initiative designed for thepurpose of bidiretional ommuniation in the browser,this means that pratial impliations suh as proxiesshould not hoke the ommuniation hannel beauseof misinterpretation of the data exhanged.The protool is work-in-progress and onstantlyhanging the latest version is available from [20℄.WebSokets are work-in-progress but somebrowsers have however has implemented di�erent ver-sions of the protool draft. Firefox 3.7, Chromium,Google Chrome has experimental WebSoket supportof what seems to be based on draft-spei�ation 75.8

2.6 Seurity ConernsTraditional desktop appliations are vulnerable to in-orret memory-management whih an be exploitedas attak-vetors for manipulating the behavior of theappliation, rashing it or making it exeute ode re-siding in other parts of system memory.Browser-based appliations are not onerned withperforming aurate memory-management sine this ishandled by the browser. Browser-based appliationsare however vulnerable to muh simpler methods ofmanipulating appliation behavior. One suh attakmethod is alled Cross-Site-Sripting (XSS[24℄), it ex-ploits appliations whih does not �lter user-input butinstead diretly sends user-input to the browser forrendering. This an be used to injet HTML, CSS,JavaSript or Flash into the appliation whih will thenbe exeuted when rendered by the browser.Imagine a soial networking site whih did not per-form proper user-input heking, a maliious user ouldinjet JavaSript ode into their pro�le page. Everyvisitor wathing the pro�le page would then exeutethe JavaSript ode injeted by the maliious user,whih would enable the sript to exeute ations in theontext of the vitim, sending messages to everybodyin their soial network with messages suh as �you areso foo, bar� or other messages that the vitim probablydid not intend on sending.Another ommon threat for browser-based applia-tions are Cross-Site-Request-Forgery (CSRF[23℄), it isbased on a hostile web-page reating fake requests fora target website. Continuing with the example of thesoial networking site. A CSRF an be omposed byproviding image on a hostile site performing a forgedrequest on the soial-networking site.1 To protet against suh attaks browsers implementSame-Origin aess poliies.2.7 Frame-bu�er RenderingWhen the omplex issues of enabling browser-basedbidiretional ommuniation has been solved anequally important problem must be handled: how toe�iently render retangles of frameBu�erUpdates inthe browser?Browsers are apable of e�iently rendering imagesin form of tags and browsers support deod-ing images of di�erent �le formats suh as: PNG, GIF,JPEG and some variations of 16bit bitmaps. The 32bitBGRA representation of the RAW enoding using true-olor is however not supported. One approah wouldbe to do real time onversion of the RAW enodedretangle format suh as JPEG or PNG. Doing so inJavaSript would probably be too demanding. Anotherapproah would be to let the middleware perform real-time enoding of retangles, suh a solution has someinteresting perspetives.The middleware ould be applied in other senarioswhere a native VNC-lient supports more advaned en-

odings suh as the TightVNC enoding whih is basedon JPEG ompression. The TightVNC enodings-sheme provides a trade-o� between CPU utilizationand throughput requirements. By signi�antly lower-ing the throughput requirements but also requiring amuh higher CPU-utilization on the VNC server. Byproviding enoding in the middleware the VNC serverould use the simple RAW enoding and o�oad theexpensive JPEG ompression to the middleware.Suh a solution based on tags wouldhowever handle inremental frameBu�erUpdates andCopyRet enodings poorly sine there is no means foropying a subretangle of the image ontained withinthe tag.Another approah would be to use the <CANVAS>tag whih is made available in HTML5, the anvas sup-ports e�ient operations on suh as putImageData andgetImageData to opy sub-retangles and do partialupdates of the frame bu�er.2.8 ConlusionA ombined summary of the hallenges are providedas a list of reommendations for the Arhiteture, De-sign and Implementation of the loud-based networkappliation jsVNC.Choosing a method for obtaining bidiretional om-muniation is quite essential, WebSokets are promis-ing they provide a low-overhead and fully bidiretionalommuniation primitive with a lean API. They arehowever work-in-progress and not very widely supportso it would be reommended to reate a minimalistiommuniation library in JavaSript whih provide afail-over when WebSokets are not available. This fail-over library ould take advantage of the BOSH spei-�ation. BOSH is quite attrative sine it is designedto work in a very strit browser-environment and ouldthus provide for a robust alternative to WebSokets.The approah of letting middleware handle real-time enoding of frameBu�erUpdate retangles hassome interesting perspetives but lak support of opy-ing sub-retangles. The idea of o�-loading middlewareould provide potential food for though for future work.The anvas element seems like a better reommenda-tion for this projet and if the browser does not nativelysupport it the ExCanvas[5℄ projet ould be used a fail-bak.Want to use Canvas, sine we rely on anvas,browsers whih are new enough to support anvas willalso support XHR. However support for WebSoketsis still very limited sine it is onstantly hanged so afallbak ommuniation protool when WebSokets arenot available.
9

3 Arhiteture & DesignThe arhitetural onsiderations and design-hoies areonerned with lient-server onnetion establishmentand enabling browser-based bidiretional ommunia-tion.The hallenges in lient-server onnetion estab-lishment are that network address translators (NAT)hinders a lient from diretly establishing a onne-tion to a server behind a NAT-enabled devie, sineNAT only translates outgoing onnetions. The sim-plest solution is to let the NAT-devie forward all traf-� on a spei� port to the server. Suh an approahis however quite umbersome sine it requires aessto a devie whih is likely to be out of administra-tive sope. Another solution is to use hole-punhing,a tehnique used by UDP-based peer-to-peer applia-tions suh as VOIP, real-time-games and others. Hole-punhing tehniques however rely on implementationspei� properties of NAT-devies whih make themslightly unstable. Work[2℄ has been made to adapthole-punhing tehniques to TCP, their results showthat only 64% perent of the tested Nat-devies sup-port the TCP-hole-punhing tehniques.Sine browsers are not able to establish raw sok-ets but rely on WebSokets or Comet-based to enablebidiretional ommuniation. Thus a means for per-forming protool-translation from WebSokets/Comet-based ommuniation to raw sokets must be provided.This ould arhiteturally be plaed as the responsibil-ity of the VNC server, by expanding the implementa-tion of the VNC server to be able to run RFB on topof WebSokets/Comet-based ommuniation. The ad-vantage to this is that jsVNC ould onnet diretlythe VNC server without requiring an intermediary totranslate protools. Two arhiteturally di�erent solu-tion models ould be applied in aiding jsVNC:Deentralized use hole-punhing-tehniques as de-sribed in [2℄ for establishing lient-server om-muniation and implementing protool transla-tion in the VNC server.Centralized use a middleware platform for protool-translation and aiding lient-server ommunia-tion.The labeling of a entralized vs deentralized arhi-teture is referring to a entralization of the onernsvs deentralization of the onerns. There is nothingthat prevents the middleware platform from being im-plemented in a distributed fashion. The main riteriathat marks the arhiteture as entralized is that allthe onerns are entralized in the middleware and notdeentralized to be handled by the VNC lient andserver.The work in this projet is based on a entralizedmiddleware arhiteture whih primary purpose is toperform protool translation as illustrated in �gure 5and to aid onnetion establishment as illustrated in�gure 6.

Figure 5: MIFCHO primary purpose: protool trans-lation.

Figure 6: MIFCHO seondary purpose: aiding lient-server onnetion establishment.

10

4 ImplementationThe implementation of jsVNC is multi-part, imple-menting the atual VNC appliation is only a smallpart of the total required engineering e�ort. The om-bined engineering e�ort onsists of:Web-Appliation The atual jsVNC browser-basedappliation onsisting of HTML, CSS andJavaSript that forms the graphial user-interfaeand implementation of the RFB protool. Theimplementation is desribed in setion 4.2.Bidiretional-ommuniation library and protoolmust be implemented sine WebSokets at thetime of writing are labeled as work-in-progressand therefore have very limited browser-support.Therefore a fail-bak for providing bidiretional-ommuniation must be implemented in form ofa protool de�nition and a JavaSript library tosupport it. The JavaSript ommuniation li-brary and protool is named Hobs its implemen-tation is desribed in setion 4.1.Middleware must be implemented to support the ar-hiteture desribed in setion 3. The implemen-tation responsible for these things is named MIF-CHO (MIddleware For Connetion Handlingand Orhestration) and its implementation is de-sribed in setion 4.3.4.1 HobsHobs provides a fail-bak for bidiretional ommuni-ation when the browser does not support WebSok-ets. Hobs is interfae ompatible with the WebSoketinterfae desribed in [19℄, this provides for a meansof using Hobs as a drop-in replae in an appliationusing WebSokets to provide bakward ompatible op-eration. And it is designed to be just that, a simpleimplementation of a WebSoket.Hobs uses two onurrent TCP onnetions to ob-tain bidiretional message exhange, one onnetion forsending messages from lient to server as desribed insetion 4.1.3 and another onnetion for server to lientmessages as desribed in setion 4.1.2. Two onne-tions are neessary sine Hobs uses the Long Pollingtehnique in order to be able to reeive data. If oneonly onnetion was used then the send of a messagewould have to wait for the Long Poll to �nish andhereby adding a high amount of lateny for sendingdata. Therefore two onnetions are used, one for lientto server messages and another for server to lient mes-sages.Where other omet implementations/protools en-apsulate meta-data in the HTTP body and enodingit in either JSON(Bayeux) or XML(Bosh), Hobs enap-sulate meta-data in the HTTP request-line and reserveuse of the HTTP body only for payloads. The namingonvention used by Hobs is illustrated in �gure 7.

1 /<pr e f i x >/<msg_id>/<arg1>/<arg2 >/.../ <argN>Figure 7: Meta data path enapsulation.Eah item of meta-data is therefore separated witha �/�. All Hobs meta-data has <pre�x> whih is usedused as a namespae-separator suh that Hobs an o-exist with web servers and other uses of the HTTP pro-tool on the same host and port. <msg_id> identi�esthe type of messages arried, valid message-identi�ersare �reate� and �session�. The message-identi�er isfollowed by N arguments.
4.1.1 Session Creation1 GET /hobs/ r e a t e /<rid>/<wait>/<ep_host>/<ep_port> HTTP/1 .1The Hobs meta-data for initialization onsists of apre�x followed by the message-identi�er reate indi-ating session reation and the arguments request_id,wait, endpoint_host, endpoint_port and an optionalmifho_id. An example of the session reation re-quest/response is provided in appendix B.1.The session reation argument request_id is an ar-bitrary integer whih will be inremented for eah mes-sage send from Hobs, the request_id is meant to beused on the server-side as a way to order inoming mes-sages to ensure orret ordering. The wait argument isan integer larger than zero that informs the server-sidehow long it should wait in seonds before timing outa Long Poll. endpoint_host, endpoint_port togetheridentify the address of the host whih the lient wantsto ommuniate with.The optional mifho_id an be used to indiatethat the endpoint address should be ontated via an-other MIFCHO instane identi�ed by mifho_id. Thiswill establish a tunnel between the urrent MIFCHOinstane and the MIFCHO instane identi�ed by mif-ho_id.The meta-data of the session reation request justdesribed is delivered to the MIFCHO instane enap-sulated in the PATH part of the request-line of a HTTPGET request as illustrated in �gure 8. When the MIF-CHO instane reeives the reation-request it will at-tempt to establish a soket to the endpoint spei�ed. Itwill upon suess return a HTTP Response with a ses-sion_id in the body. The session_id is a unique inte-ger generated by the MIFCHO instane whih identifythe session reated.11

Figure 8: Hobs initialization.Hobs will on retrieval of the session_id initiate arev_loop implementing a Long Poll whih is de-sribed in the following setion.4.1.2 Server to Client Messages1 GET /hobs/ s e s s i o n/<sid> HTTP/1 .1After the session reation the server will send pay-loads to Hobs enapsulated in the response to a GETrequest, Hobs provides meta-data in the HTTP GETrequests in the form a pre�x, the message-identi�er ses-sion and �nally a session_id retrieved during sessionreation. An example is provided in the appendix se-tion B.3.To ensure a onstant stream of data from the server,Hobs sends the GET requests in a Long Polling loopas illustrated in �gure 9. When a payload is reeivedHobs immediately exeutes the rev_loop funtionagain to retrieve further payloads. Additionally Hobsexeutes the funtion bound to onmessage.Notie that the MIFCHO instane an wait in twosenarios, either waiting endpoint payloads or wait fora GET request in whih to send the payload. Whenwaiting for endpoint payloads MIFCHO needs to im-plement the Long Polling timeout but equally impor-tant is it for MIFCHO to support bu�ering of payloadswhen waiting for Hobs GET requests. Bu�ering shouldbe bound by an upper limit suh data does not log upat the intermediary.

Figure 9: Hobs reeiving two payloads PL0 and PL1from endpoint to Hobs.

4.1.3 Client to Server Messages1 POST /hobs/ s e s s i o n/<sid>/<r id+1>/ HTTP/1 .12 Content−Length : <payload_length>34 <payload>Payloads send from lient to server are enapsu-lated in HTTP POST requests with Hobs meta dataonsisting of a pre�x, message-identi�er session, ses-sion_id/sid identifying the Hobs session and an inre-mentation of the request_id/rid. A short example isgiven in the �gure above and a more elaborate exam-ple is provided in the appendix setion B.2.The handling of the HTTP enapsulation is illus-trated in �gure 10 where two payloads PL0 and PL1and send from Hobs. When MIFCHO reeives thePOST request it extrats the payload and forwards itto the endpoint. Notie that the HTTP response to theHTTP POST ours immediately and does not provideany information on the delivery of the payload to theendpoint. The HTTP Response is only an indiationof whether MIFCHO will eventually forward the pay-load and as the �gure shows then the atual forwardan our immediately prior to the HTTP Response oflater after the HTTP Response has been sent.Hobs is limited to only use two underlying onne-tions, Hobs therefore ounts the amount of outstand-ing POST requests, if a POST is urrently ongoing thesend will store the payload in an output bu�er. Whenthe ongoing POST returns it will immediately POSTall payloads in the output bu�er.This behavior has the advantage that it lowers om-muniation lateny when the JavaSript appliationhas a high frequeny of small payloads. This oursin VNC when the lient must update the ursor posi-tion on the server in form of a pointerEvent.

Figure 10: Hobs sending two payloads PL0 and PL1from Hobs to endpoint.
12

4.2 jsVNCjsVNC is organized into multiple layers as illustrated in�gure 11. The lower layers onsists of an implementa-tion of the Hobs protool as desribed in the previoussetion. The logi required for VNC/RFB messagesare enapsulated in its own layer and is built on top ofthe Hobs library and WebSokets to provide the bidi-retional ommuniation primitive. It uses a simplemethod to hek whih ommuniation method to in-stantiate by simply heking for availability whih isdone i JavaSript as illustrated in �gure 12.

Figure 11: Layered struture of jsVNC.Many di�erent frameworks for aiding JavaSriptappliation development exists to name a few GoogleWeb Toolkit (GWT), jQuery, Prototype et. The lowerlayers of jsVNC are not oupled to any frameworkssine it would greatly redue portability and inter-operation of jsVNC, It is only the top-level bindingof HTML elements to JavaSript events whih utilizea framework. This means that Hobs and Vn an bereused in di�erent projets and integrated with otherbrowser-based appliations without enforing the use aany partiular framework.1 i f ("WebSoket" in window) {}2 else i f ("Hobs" in window) {}3 else return f a l s e ;Figure 12: Cheking for apabilities in JavaSript.An overview of the ode layout an be inspetedin table 4, the list of essential apabilities of an VNC-lient whih was derived in setion 2.1 is reproduedhere with a desription of how the apabilities areimplemented. A omplete overview of the feature-ompleteness of jsVNC is provided in table 3.Deode the retangle-enodings of the frameBu�er-Update messages.This task is handled by the proess_bu�er in theVn layer. Based on the type of enoding useddi�erent methods are exeuted, for the RAWenoding the funtion draw_retangle is used.Draw_retangle basially deodes the RAW en-oding by transforming the BGR representationto RGB and at the same time onverts the byte-data to a numerial number whih the anvas el-ement an understand.

Render the deoded retangles on the loal displayand opy an area of the frame-bu�er to di�erentoordinates.This task is also handle by the draw_retanglemethod for RAW enoding and for inrementalframeBu�erUpdates. But the essential part isthat the frame-bu�er uses the anvas tag to ren-der the frame-bu�er.Grab loal mouse input and transform them intopointerEvent messages.This task is handled by athing all onmouse-move, onmousedown and onmouseup events andupdate a global representation of the state ofmouse, inluding position on sreen and the bit-mask of buttons pressed. This is done to providea data struture whih an be use to poll for theurrent state of the mouse, this is needed to sendorret pointerEvents. When reeiving onmouse-move events the urrent state of the buttons areunknown if jsVNC in these situations send theinorret bitmask then features suh as drag-and-drop would not be possible.Grab loal keyboard and transform keystrokes tokeyEvent messages.The keyEvent message is easily mapped to theonkeyup/onkeydown events sine the keyEventmessage simply onsists of a down �ag indiat-ing whether the key was pressed or released andthe key itself. The keyEvent message is how-ever only partially implemented sine it requiresa manual mapping of an browser-spei� integer-values representing a key and the keysym thatthe VNC server will interpret. The overlappingset of haraters are only the alphanumeri har-aters in the ASCI har-set.FrameBu�erSheme Implement a sensible shemefor sending frameBu�erUpdateRequests.This tasks is implemented by the fbur_poll fun-tion it uses a global FburPoll struture withthe �elds frequeny (int) and polling (bool).fbur_poll alls itself reursively as long as Fbur-Poll.polling is true, eah reursive all is delayedFburPoll.frequeny seonds by the use of the set-Timeout method.Only the �rst frameBu�erUpdate request is a fullrequest, every suint request is inremental.It was found that prepending a pointerEvent toeah frameBu�erUpdate improved user-pereivedperformane.User pereived performane is di�ult to measure butone fat is that users expet that interating with asystem would result in a some sort of reating within ashort period of time. If the too long time passed beforethe appliation responds with any type of feedbak thebehavior is interpreted as an error by the user. WithRFB this requires that the polling yle mathes withthe exat time of when something hanges on the serverdisplay.13

This is very hard to predit on the lient side, ex-ept for the ase when the lient does something thatould lead to hanges in the frame-bu�er, suh as mov-ing the mouse over an graphial element with hoveringe�et.To ahieve good user-pereived experiene thisould be taken advantage of suh that eah point-erEvent generated by mouse movement is send togetherwith a frameBu�erUpdateRequest.This might seem like an exessive amount of up-date requests and one onern is that frameBu�erUp-dateRequests are 10bytes in size and pointerEvent areonly 6bytes in size. Using this tehnique would indi-retly inrease the message-size of eah pointerEventwith ~166 perent.However the Hobs Enapsulation requires about513bytes in HTTP Request-line and headers, the a-tual message-size inrease when bundling pointerEventand frameBu�erUpdateRequest is therefore neglet-able due to the protool overhead of Hobs.Using Hobs and WebSokets inreases the lengthsof messages due to payload enapsulation. Payloadenapsulation is required in order to safely transfer bi-nary data over XHR requests in environments wherethe browser does not allow the lient to the hangeof the HTTP-headers and therefore annot hange themime-type to appliation/raw. WebSokets also needto perform payload enapsulation, the protool spei�-ation desribes a binary framing type, the WebSoketAPI however does not provide for at any means to en-able the use of the binary framing.Therefore both WebSokets and Hobs use a base64enoding of payloads to ensure safe transfer. Base64enoding indues an overhead on the payloads sine it

transforms three bytes into four and if the message isnot a multiple of 3 padding must be used.It is not possible to aurately de�ne the overheadof Hobs sine the HTTP request-line and headers dif-ferentiate depending on the browser and theCHAP. Feature Status6.1.1 Handshake - Protool Version OK6.1.2 Handshake - Seurity OK6.1.3 Handshake - Seurity Result OK6.2.1 Seurity Types - None OK6.2.2 Seurity Types - VNC Auth. -6.3.1 ClientInit OK6.3.2 ServerInit OK6.4.1 SetPixelFormat OK6.4.2 SetEnodings OK6.4.3 FrameBu�erUpdateRequest OK6.4.4 KeyEvent PARTIAL6.4.5 PointerEvent OK6.4.6 ClientCutText -6.5.1 FrameBu�erUpdate OK6.5.2 SetColourMapEntries OK6.5.3 Bell OK6.5.4 ServerCutText OK6.6.1 Enodings - RAW OK6.6.2 Enodings - CopyRet OK6.6.3 Enodings - RRE -6.6.4 Enodings - Hextile -6.6.5 Enodings - ZRLE -6.7.1 PseudoEnodingCursor PARTIAL6.7.2 PseudoEnodingsDesktopSize OKTable 3: Feature-ompleteness of jsVNC.Component Path DesriptionVn js/vn.js Implementation of RFB messagehandling, sending and GUI bindingsHobs js/hobs.js Implementation of bidiretional Hobs protool.jQuery js/jquery.js Framework for aiding the graphial user interfae.GUI vn.html HTML and JavaSript for instantiating and binding Vn to Html elements.CSS ss/*.ss Stylesheets for HTML presentation.Images images/*.png Images used in the graphial user-interfae.Table 4: Organization of jsVNC ode.4.3 MIFCHOThe idea of MIFCHO is to provide middleware for over-oming the lient-server ommuniation establishmentissues and protool translation from Hobs/WebSok-ets to raw sokets, enabling browser-based bidiretionalommuniation with endpoints being available on theInternet or on private networks onneted to the Inter-net.The following is a desription of the abstrat orga-nization of MIFCHO after-whih a setion is provideddesribing the MIFCHO protool whih enables daisy-haining of MIFCHO instanes whih is the key enablerto solving the onnetivity issues. Lastly in setion 4.5a brief desription on how to use MIFCHO is provided.

MIFCHO is written entirely in Python. Python hasmany frameworks to aelerate development and easethe maintenane of networked appliations. The third-party Twisted framework is a popular hoie and sois the built-in SoketServer framework. In the earlystages of development both frameworks were experi-mented with to see how they ould assist the develop-ment. It was found that both provide too many layersof indiretion, MIFCHO is generally onerned withproviding a means for managing outgoing onnetionsand to bind on sokets and handle inoming onne-tions to sokets. Instead of using one of these existingframeworks MIFCHO is implemented as a minimalis-ti and speialized framework based on the experiene14

gained from using Twisted and SoketServer. MIF-CHO tries not be a framework useful for any type of ofnetwork-appliation suh as Twisted and SoketServer.It is instead simply a deoupling of the issues of han-dling (binding, listening, aepting and tearing down)sokets/onnetions, and to obtain onurrent proess- ing of multiple sokets/onnetions by using threads.This is done suh that implementing the appliation-spei� logi, suh as writing WebSoket to sokettranslation an fous on just that without being dis-trated about implementation issues regarding onur-reny, onnetion binding/listening and shutdown.

Figure 13: Abstrat organization of MIFCHO.The framework part or non-appliation-spei�part of MIFCHO onsists of the lasses Connetion-Manager, Connetor, Aeptor, Piper, Connetion.The organization of MIFCHO is illustrated in �gure13 The ConnetionManager is a entral entity thatprovides helper funtionality for establishing outgoingonnetions via the onnet() method and to bind/lis-ten/aept inoming onnetions via the soket_bla()method. The ConnetionManager holds referenesto all bound and opened onnetions and providesa means for graefully tearing down onnetions viathe teardown() method. The ConnetionManager alsomaintain lists of Peers and Tunnels. Peers are otherMIFCHO instanes whih the ConnetionManager anuse to reate onnetions through. Tunnels are lists ofonnetion pairs (a, b) where the output of onnetiona is opied to the input of onnetion b and the outputof onnetion b is opied to the input of onnetion a.Aeptors ontain appliation-spei� logi. An a-eptor is based on the well-known design pattern of aworker-pool. Work in the ontext of MIFCHO onsistsof a 3-tuple/triplet on the form:

1 (onn , address , aux)Where onn and address are the result of asoket.aept() all with the addition that the onnis a soket enapsulated in a Connetion objet. auxprovides for auxiliary data.A skeleton example of implementing an aeptor isprovided here:1 l a s s MyAeptor (Aeptor) :2 de f work (s e l f , job) :3 (onn , address , aux) = job4 . . .For the reader familiar with the SoketServerframework distributed with Python then Aeptors aresimilar to RequestHandlers. Spei�ally the work()method of an Aeptor is equivalent to the handle()method of a RequestHandler.There is however substantial di�erene in the life-yle of RequestHandler and Aeptor objets and intheir oupling to the soure produing the onnetionwhih they �handle� or �work �.Dispathers are the glue between the Connetion-Manager and the Aeptors. Dispathers take ingoing15

onnetions as input and ontain the logi to route theingoing onnetion to the appropriate Aeptor and toreate the work triplet desribed earlier. The aux partof the work-triplet an be used to provide additionaldata to the Aeptor. MIFCHO has two dispathers(TCPDispather and HTTPDispather) implementingdi�erent dispathing strategies, most interesting is theHttpDispather. It dispathes request to di�erent A-eptors based on the request-line of an ingoing onne-tion ontaining a HTTP Request. This strategy makesit possible in a simple way to have multiple di�erentuses of the HTTP protool on the same (host, port)pair.MIFCHO has several Aeptors the Hobs and Web-Soket Aeptors performs protool translation fromHobs/WebSoket to raw sokets. Aeptors howeverare not limited to doing protool-translation, MIFCHOhas three other Aeptors: Peer, StatiWeb and Man-agement. Peer aeptor implements part of the proto-ol desribed in the following setion, StatiWeb imple-ments a simpleWebServer serving stati �les, Manage-ment provides performane data suh as CPU utiliza-tion of the MIFCHO instane. The StatiWeb Aeptorprovides a onvenient way to distribute the jsVNC web-appliation while maintaining same-origin ompliane.These Aeptors are all based on the HTTP pro-tool, two other aeptors exists with the purpose ofproviding simple TCP forwarding and Tunneling.The �nal entity in MIFCHO are the Connetors, ais the reverse of an Aeptor. Instead of waiting forinoming onnetions the Connetor itself establishedoutgoing Connetions. MIFCHO ontains one Conne-tor, the PeerConnetor implements the other part ofthe MIFCHO protool.4.4 MIFCHO ProtoolThe primary purpose of the MIFCHO protool is toenable distint MIFCHO instanes ommuniate andestablish onnetions via eah other.MIFCHO is a simple protool with three messages:handshake, tunnel-setup request and tunnel-setup re-sponse. The MIFCHO protool messages are enapsu-lated in HTTP in an RPC-like fashion with meta-dataprovided via the PATH of the HTTP Request-line. Theenapsulation of meta-data in th PATH was also ho-sen in the Hobs protool, this approah is attrativewhen the amount of arguments are few and providesa simple API when the messages a similar to remoteproedure alls. The pre�x ould be onsidered an ob-jet instane referene, hello and tunnel method namesand everything else �/� separated arguments.In the following setions the MIFCHO messages aredesribed and to names MFC-0 and MFC-1 are usedto identify two MIFCHO instanes.4.4.1 Handshake1 POST /peer / h e l l o /<peer_id> HTTP/1 .1The handshake as illustrated in �gure 14 is initiatedby the entity establishing the onnetion to the other

party. In the illustration this is MFC-1 onneting toMFC-0. MFC-1 identi�es itself by sending the helloommand ontaining MFC-1s peer_id. The peer_id isnot a network address but a unique identi�ation ofMFC-1.

Figure 14: MIFCHO handshake.
When MFC-0 reeives the hello message it stores areferene to the underlying soket of the HTTP POSTrequest, mapped to by the peer_id and sends a HTTP200 OK to MFC-1. The underlying soket is alled theontrol onnetion of MFC-1. The ontrol onnetionis maintained by MFC-1 meaning that if it should bedisonneted it will attempt to reonnet. After MFC-1 has reeived the 200 OK response to it's handshakemethod it starts to listen on the ontrol onnetion fortunnel setup requests.MIFCHO then swithes diretion of HTTP re-quests, suh behavior is spei�ed under the ReverseHTTP protool spei�ation.4.4.2 Tunnel Setup Request and Response

The meta-data for a tunnel setup request onsists ofpre�x, �xed message-identi�er string �tunnel�, followedby a tunnel_id, endpoint_host and endpoint_port.The meta-data for tunnel setup response onsists ofa pre�x and a �xed message-identi�er string �tunnel�.16

Figure 15: MIFCHO tunnel setup request and re-sponse.As desribed in the previous setion then MFC-1 listens on its ontrol onnetion for setup requests.When MFC-0 needs to tunnel data through MFC-0 itlooks up the ontrol onnetion of MFC-1 and sendsthe setup request, MFC-1 responds immediately indi-ating not that the status of ontating the endpointbut the status of whether the MFC-1 will attempt toontat the endpoint.MFC-0 then attempts to ontat the endpoint spe-i�ed in the meta-data, after-wards it establishes a newsoket with MFC-0 and sends a tunnel setup responseon the new soket. When MFC-0 has veri�ed that thetunnel_id provided is valid it responds 200 OK.MFC-0 and MFC-1 hereafter tunnels all payloadson these two newly reated sokets.4.5 Using MIFCHODeploying jsVNC and MIFCHO an be done by:1 d ~2 mkdir deploy3 svn export http : //mifho . goog l eode . om/svn/trunk/ mifho4 svn export http : // j svn . goog l eode . om/svn/trunk/ sr j svn5 d mifho6 # ad jus t the on f i gu r a t i on f i l e7 python bin /mifho . py − e t /web_gw . onf − l var/ log /web_wg. log −v ERRORFigure 16: Starting a MIFCHO instane with on�g-uration in web_gw.fg, logging to web_gw.log at log-level ERROR.
17

5 ExperimentsThe experiments should reveal the di�erene in re-soure utilization and onsumption between using atraditional VNC lient and the browser-based VNClient jsVNC.Two experiments were designed to measure theCPU utilization and memory onsumption on the de-vie running the VNC lient and another experimentto see the e�et of the protool overhead as desribedpreviously. To perform these two experiments tools areneeded to be able to: reproduing a desktop intera-tion, measure CPU/memory utilization and measurethe amount of bytes transferred.Two tools (reord.py and play.py) were developedfor reproduing the desktop interation. reord.pydoes as the suggest perform a reording user-inputevents from the X window system suh as mouse-keydown/keyup/move and keyboard keydown/keyup.reord.py is based on an example appliation from theXlib python bindings and enhaned with funtionalityto store all events to �le with a timestamp suh thatevents an be replayed.The replay of events is performed by play.py and inaddition to exeuting events in a timely manner it alsosamples CPU utilization and memory onsumption ofa target proess.It was established in the analysis that a VNC lientusing only RAW, CopyRet and pseudo-enoding is notable to playbak video in a deent quality without stut-ter. The desktop interation reord with reord.py wastherefore a utilization of a desktop where the intera-tions omprised of a set of operations ommon to theuse of a desktop environment. This inluded movingthe mouse over items to trigger hover-e�ets, likingof pop-up menus, writing text in a text-editor, draw asimple drawing in a drawing program, maximize andminimize windows to trigger the transfer of larger ret-angles than those transferred with the other uses andlastly drag windows around to provoke the use of theCopyRet enoding.A sreen-reording of the this interation is pro-vided in the appendix setion C, links to an onlineversion of this video demonstration is also available inthe appendix.For the �rst experiment the desktop interationwas played bak with play.py using the followingVNC lients: TightVNCs vnviewer, jsVNC in GoogleChrome using WebSokets, jsVNC in Google Chromeusing Hobs and �nally jsVNC in Firefox using Hobs.For the seond experiment the previously desribeddesktop interation is played bak with play.py butadditionally used Wireshark to reord the message-exhange between the VNC lient and MIFCHO.The VNC server was in both ases running on amahine with Mirosoft Windows XP and the refer-ene VNC-server implementation VNC Free Edition4.1 from RealVNC. The desktop was using a resolu-tion 1280x712 with 32bit olors.

5.1 ResultsIn �gure 17 the CPU utilization is plotted as a funtionof time, the graph shows a peak for all lients in thebeginning of the desktop interation this is due to theserver sending the entire frame-bu�er to the lient re-quiring the most amount of work during this period oftime. The graph of the browser-based lients stabilizesaround 30% CPU utilization within about 5 seonds.The graph of the native VNC-lient stabilizes around1% CPU utilization within about one seond.

Figure 17: CPU utilization in perent of jsVNC andvnviewer.The graph quite learly shows that the browser-based lients have a signi�antly higher CPU-utilization with a peak of 112% where the native VNC-lient never exeeds 6% utilization. It is interesting toobserve that there does not seem to be any lear ad-vantage in terms of CPU-utilization in using browser-supported WebSokets.To unover what the soure of this signi�antlyhigher CPU-utilization is a CPU-pro�ling was run onjsVNC, revealing that 45% of the time was spendof base64 deoding. This explains both why CPU-utilization is so muh higher than the native VNClient, sine the native lient does not need to do anybase64 enoding and it explains why there is not any-thing to gain with the browser-supported WebSoketssine the dominant operation of base64 deoding is re-quired for both Hobs and WebSokets.

Figure 18: Memory onsumption of jsVNC andTightVNCs vnviewer.The memory onsumption of jsVNC in GoogleChrome and Firefox and TightVNCs vnviewer is plot-ted as a funtion of time in �gure 18 . The graphshows that the memory onsumption Google-Chrome18

quikly onsumes about 3.5MB whih orrespondssomewhat to the size of the frame-bu�er = 1280*712*4/ (1024*1024) ~= 3.47MB. The graph rises at the endof interation whih omplies with the maximizationand minimization performed whih leads to somewhatlarger framebu�erUpdates. It is mildly surprising tosee that native vnviewer uses less than a MB of mem-ory. The graph again learly shows that the browser-based VNC lient has a signi�antly higher resoureonsumption than the native lient.The amount of bytes transferred in absolute valuesand relative values to the native lient is provided intable 5.Bytes Send Reeived TotalVnviewer 706312 60903223 61609535jsVNC WS 777814 74756330 75534144jsVNC WS % 10.1% 22.7% 22.6%jsVNC Hobs 4109996 81286663 85396659jsVNC Hobs % 481.8% 33.4% 38.5%Table 5: Bytes transferred in absolute values and per-entile inrease in relation to the native lient.The graph shows the total amount of bytes trans-ferred for jsVNC using WebSokets, jsVNC using Hobsand for TightVNCs native VNC-lient. The graphshows that Hobs has a higher overhead than WebSok-ets. This is also to be expeted sine Hobs enapsulatespayloads in HTTP request/response pairs and Web-Sokets only use a onstant four bytes for the begin-ning/end of message indiators.The data a lient reeives with RFB mostly on-tains large messages where the data a lient sendswith RFB is mostly small messages. Sine a lientreeives frameBu�erUpdates and sends frameBu�erRe-quests and pointerEvent/keyEvents. The table showsthat the overhead is most signi�ant when sendingpakages due to the fat that the sending is omprisedof many small messages.

19

6 ConlusionIn this paper a ase study of engineering loud-basednetworking appliations has been onduted. Cloudomputing provides a means for seamlessly makingomputing resoures available as a servie, on-demand,everywhere. The work in this paper studies the engi-neering hallenges of making a VNC lient available asa servie, on-demand in an Internet-browser.A VNC lient has been engineered and experimentsshow promising results that it is feasible to engineernetwork appliations in the browser whih require highthroughput and low lateny. Experiments however alsoshow that the prie of loud-based VNC lient is paidwith signi�antly higher CPU utilization, memory on-sumption and bandwidth onsumption than a tradi-tional VNC lient.The work in this paper also analyze the hallengesof enabling soket-like ommuniation for the browserand a middleware platform for aiding onnetion-establishment, enabling protool translation and per-forming browser-based appliation deployment hasbeen implemented.It was also found that one of the ontributors tosigni�ant higher CPU-utilization of the browser-based

VNC lient is base64 deoding of data. This disoverystressed the importane for futureWebSoket APIs andprotools to support binary framing to safely and ef-�iently transport binary data in browser-based appli-ations.6.1 Future WorkExperiment with implementing more enoding-shemes based on the ommunity maintained RFBspei�ation. The TIGHT enoding-sheme is basedon JPEG ompression this is interesting sine Internet-browsers are well-equipped for rendering JPEG images.It ould be interesting to evaluate the di�erene in per-formane of jsVNC with TIGHT enoding vs the RAWmanually handling deoding.It was observed during the experiments that a largepart of the CPU-utilization was aused by base64 en-oding and deoding of messages, it ould be interest-ing to �nd a way to enable Hobs to transfer binary datain a safe way without requiring the base64 enoding.Another observation was made that MIFCHO ouldbe used as an o�oad proxy for the CPU-intensive tasksof JPEG enoding frameBu�erUpdates.

20

Referenes[1℄ FreeNX. http://freenx.berlios.de/, 2010.[2℄ P. S. Bryan Ford and D. Kegel. Peer-to-peer ommuniation aross network address translators. InProeedings of the annual onferene on USENIX Annual Tehnial Conferene, ATEC '05, pages 13�13,Berkeley, CA, USA, 2005. USENIX Assoiation.[3℄ arde. arde - Pure Web Standards based Remote Desktop. http://ode.google.om/p/arde/, 2010.[4℄ M. Fui. FlashLight-VNC. http://www.wizhelp.om/�ashlight-vn/, 2010.[5℄ Google. ExplorerCanvas. http://exanvas.soureforge.net/, 2010.[6℄ Google In. Google Seure Data Connetor. http://ode.google.om/seuredataonnetor/, 2010.[7℄ P. S.-A. J. M. Ian Paterson, Dave Smith. XEP-0124: Bidiretional-streams Over Synhronous HTTP(BOSH). XEP-0124 (Informational), 2009.[8℄ jssokets. jssokets. http://ode.google.om/p/jssokets/, 2010.[9℄ Kaazing. Kaazing Gateway. http://www.kaazing.org/on�uene/display/KAAZING/Home, 2010.[10℄ Mirosoft. Windows Remote Desktop. http://support.mirosoft.om/default.aspx?sid=kb;EN-US;q186607, 2010.[11℄ NoMahine. NX. http://www.nomahine.om/produts.php, 2010.[12℄ Orbited. Orbited. http://orbited.org/, 2010.[13℄ A. Russell. Comet Low Lateny Data for the Browser. http://alex.dojotoolkit.org/2006/03/omet-low-lateny-data-for-the-browser/, 2010.[14℄ TigerVNC. TigerVNC. http://tigervn.org/, 2010.[15℄ TightVNC. TightVNC. http://www.tightvn.om/, 2010.[16℄ TightVNC. TightVNC Java Viewer. http://www.tightvn.om/ssh-java-vn-viewer.php, 2010.[17℄ R. L. Tristan Rihardson. The RFB Protool. www.realvn.om/dos/rfbproto.pdf, 2009.[18℄ UltraVNC. UltraVNC. http://www.uvn.om/, 2010.[19℄ W3C. The WebSoket API. http://dev.w3.org/html5/websokets/, 2010.[20℄ W3C. The WebSoket Protool Spei�ation - Latest. http://www.whatwg.org/spes/web-soket-protool/, 2010.[21℄ S. G. Ware. Guaamole. http://soureforge.net/projets/guaamole/, May 2010.[22℄ S. G. Ware. Java Soket Bridge. http://stephengware.om/projets/javasoketbridge/, 2010.[23℄ Wikipedia. Cross Site Request Forgery. http://en.wikipedia.org/wiki/Cross-site_request_forgery, 2010.[24℄ Wikipedia. Cross Site Sripting. http://en.wikipedia.org/wiki/Cross-site_sripting, 2010.

21

A MIFCHO Con�guration Example1 [Hobs Gateway ℄2 u r l=http : // t i l e −0−0. l o a l :8000/ hobs3 i n s t an e s =154 omponent=HobsAeptor56 [Websoket Gateway ℄7 u r l=http : // t i l e −0−0. l o a l :8000/ wsoket8 i n s t an e s =159 omponent=WebsoketAeptor1011 [Peer I n t e r f a e ℄12 u r l=http : // t i l e −0−0. l o a l :8000/ peer13 i n s t an e s =1514 omponent=PeerAeptor1516 [Management I n t e r f a e ℄17 u r l=http : // t i l e −0−0. l o a l :8000/ admin18 i n s t an e s =1519 omponent=ManagementAeptor2021 [jsVNC App Deploy ℄22 u r l=http : // t i l e −0−0. l o a l :8000/ j svn23 i n s t an e s =1524 omponent=StatiWebAeptor25 path_pref ix =. ./ j svn / s r 2627 [TCP Forward ℄28 u r l=tunnel : // t i l e −0−0. l o a l :5900/ l o a l h o s t /5900029 i n s t an e s =1530 omponent=TCPForwardAeptor3132 [TCP Tunnel v ia Peer ℄33 u r l=tunnel : // t i l e −0−0. l o a l :8001/1234/ l o a l h o s t /5900034 i n s t an e s =1535 omponent=TCPTunAeptor Figure 19: Example MIFCHO on�guration �le.B Message SamplesB.1 Hobs Session CreationSession reation request of 443 bytes.1 GET /hobs/ r e a t e /3527051141/50/ jsvn −01/59000 HTTP/1 .12 Host : t i l e −0−0:80003 User−Agent : Moz i l l a /5 .0 (X11 ; U; Linux x86_64 ; en−US; rv : 1 . 9 . 2 . 5 pre) Geko/20100528 Ubuntu/10.04 (l u i d) Namoroka / 3 . 6 . 5 pre4 Aept : t ex t /html , app l i a t i on /xhtml+xml , app l i a t i on /xml ; q=0.9 ,∗/∗ ; q=0.85 Aept−Language : en−us , en ; q=0.56 Aept−Enoding : gz ip , d e f l a t e7 Aept−Charset : ISO−8859−1, u t f −8;q=0.7 ,∗ ; q=0.78 Keep−Al ive : 1159 Connetion : keep−a l i v e10 Origin : n u l lSession reation response of 110 bytes.1 HTTP/1 .1 200 OK2 Content−Length : 393 Aess−Control−Allow−Orig in : ∗45 198118126074926987294597228863060066306B.2 Hobs Sending MessageSending a pointerEvent and frameBu�erUpdateRequest, total message-length: 595 bytes.1 POST /hobs/ s e s s i o n /198118126074926987294597228863060066306/3527051188 HTTP/1 .12 Host : t i l e −0−0:8000 22

3 User−Agent : Moz i l l a /5 .0 (X11 ; U; Linux x86_64 ; en−US; rv : 1 . 9 . 2 . 5 pre) Geko/20100528 Ubuntu/10.04 (l u i d) Namoroka / 3 . 6 . 5 pre4 Aept : t ex t /html , app l i a t i on /xhtml+xml , app l i a t i on /xml ; q=0.9 ,∗/∗ ; q=0.85 Aept−Language : en−us , en ; q=0.56 Aept−Enoding : gz ip , d e f l a t e7 Aept−Charset : ISO−8859−1, u t f −8;q=0.7 ,∗ ; q=0.78 Keep−Al ive : 1159 Connetion : keep−a l i v e10 Content−Type : t e x t / p l a i n ; harse t=UTF−811 Content−Length : 2412 Origin : n u l l13 Pragma : no−ahe14 Cahe−Contro l : no−ahe1516 BQAAAAAAAwEAAAAABQACyA==Session usage response of 70bytes:1 HTTP/1 .1 200 OK2 Content−Length : 03 Aess−Control−Allow−Orig in : ∗B.3 Hobs Reeiving MessageRequest1 GET /hobs/ s e s s i o n /198118126074926987294597228863060066306 HTTP/1 .12 Host : t i l e −0−0:80003 User−Agent : Moz i l l a /5 .0 (X11 ; U; Linux x86_64 ; en−US; rv : 1 . 9 . 2 . 5 pre) Geko/20100528 Ubuntu/10.04 (l u i d) Namoroka / 3 . 6 . 5 pre4 Aept : t ex t /html , app l i a t i on /xhtml+xml , app l i a t i on /xml ; q=0.9 ,∗/∗ ; q=0.85 Aept−Language : en−us , en ; q=0.56 Aept−Enoding : gz ip , d e f l a t e7 Aept−Charset : ISO−8859−1, u t f −8;q=0.7 ,∗ ; q=0.78 Keep−Al ive : 1159 Connetion : keep−a l i v e10 Origin : n u l lResponse1 HTTP/1 .1 200 OK2 Content−Length : 3072003 Content−Type : t ext / p l a i n4 Aess−Control−Allow−Orig in : ∗56 <par t i a l −f r amebuf f e rupdate re sponse−base64−enoded>B.4 WebSoket InitializationHTTP ompatible setup request.1 GET /wsoket /1234/ jsvn −01/59000 HTTP/1 .12 Upgrade : WebSoket3 Connetion : Upgrade4 Host : t i l e −0−0:80005 Orig in : nu l lResponse:1 HTTP/1 .1 101 Web Soket Protoo l Handshake2 Upgrade : WebSoket3 Connetion : Upgrade4 WebSoket−Orig in : nu l l5 WebSoket−Loat ion : ws : // t i l e −0−0:8000/ wsoket /1234/ jsvn −01/590006 WebSoket−Protoo l : sampleB.5 WebSoket SendSending a pointerEvent and frameBu�erUpdateRequest, total message-length: 26 bytes.1 00BQAAAAAAAwAAAAAABQACyA==FF
23

C Physial MediumThe soure-ode for jsVNC and MIFCHO are provided on the enlosed physial medium. The ontent of themedium is organized as desribed in table 6.Path Desription/jsvn/* All soure ode related to the jsVNC browser-based appliation./mifho/* All soure ode related to the MIFCHO middleware./demo/jsvn_hrome.avi Video demonstration of jsVNC in H.264 enoding./demo/jsvn_hrome.ogv Video demonstration of jsVNC in OGV format./demo/sreenshots/*.png Sreen-shots of jsVNC./report.pdf A PDF-version of this doument.Table 6: Organization of physial medium.C.1 OnlineThe resoures desribed above are also available online via Googles projet-hosting servie and the video isavailable on Youtube. Links are provided in table 7.URLMIFCHO http://ode.google.om/p/mifho/hostedjsVNC http://ode.google.om/p/jsvn/Video-Demo http://www.youtube.om/wath?v=ToE4MzsD-Table 7: Online availability of ressoures.

24

	Introduction
	Terminology
	Related Work

	Analysis
	VNC Application
	Infrastructural Challenges and Browser Limitations
	Techniques
	Initiate Retrieval
	Server Push

	Technique Implementations
	Bayeux
	BOSH

	Wire Protocols
	WebSockets

	Security Concerns
	Frame-buffer Rendering
	Conclusion

	Architecture & Design
	Implementation
	Hobs
	Session Creation
	Server to Client Messages
	Client to Server Messages

	jsVNC
	MIFCHO
	MIFCHO Protocol
	Handshake
	Tunnel Setup Request and Response

	Using MIFCHO

	Experiments
	Results

	Conclusion
	Future Work

	References
	MIFCHO Configuration Example
	Message Samples
	Hobs Session Creation
	Hobs Sending Message
	Hobs Receiving Message
	WebSocket Initialization
	WebSocket Send

	Physical Medium
	Online

