jsVNC - A Case Study of Engineering Cloud-Based Network

Contents

Applications

Simon Andreas Frimann Lund

June 4, 2010

10

11
11
11
12
12
13
14
16
16
16
17

18
18

20
20

21

22

Abstract

Cloud computing provides a means for
seamlessly making computing resources avail-
able as a service, on-demand, everywhere. The
work in this paper studies the engineering chal-
lenges of making a VNC client available as a
service, on-demand in an Internet-browser.

A VNC client has been engineered and mid-
dleware has been implemented which encapsu-
lates the infrastructural challenges of providing
cloud-based network applications.

Experiments show promising results that
it is possible to engineer network applications
in the browser which require high through-
put and low latency. Experiments however
also show that the price of cloud-based VNC
client is paid with significantly higher CPU uti-
lization, memory consumption and bandwidth
consumption than a traditional VNC client.

1 Introduction

Internet-browsers support the paradigm of cloud com-
puting. In cloud computing the goal is to provide com-
puting resources as a service, on-demand via the Inter-
net. Internet-browsers facilitate the cloud-computing
paradigm of providing a means for on-demand delivery
of applications via the Internet without requiring any
further installation or maintenance of software on the
users device.

Browser-based applications has multiple advan-
tages that makes them more attractive than traditional
applications to both application-users and application-
developers. They can be accessed from any device
available to the user as long as the device has an Inter-
net browser. This can be their laptop, smart phone or
a device the user can borrow such as a library PC or a
friends computing device.

A browser-based application consists of HTML,
CSS and JavaScript. HTML and CSS are used to
declaratively define the graphical presentation of the
application and JavaScript is used to define the actual
application-logic. Popular browser-based applications
for application-domains such as mail-clients (Hotmail,
G-Mail), social networking (Facebook, LinkedIn) and
many others exists.

Browser-based applications however do not exist for
all application-domains since technical limitations of
Internet-browsers hinders them. Applications requir-
ing efficient manipulation of 2D or 3D graphics, or
low-level network communication. Such application-
domains include games, Computer-Assisted-Design
and network-clients.

The Internet-browser was not designed to handle
these application-domains but since the browser is a
facilitator for the cloud computing paradigm of ap-
plications as a service provides a strong incentive for
pushing the boundaries of which application-domains
the browser should handle.

One approach to pushing the boundaries is to ex-
pand the capabilities of the browser by using third-
party plug-ins. Such plug-in technology include Java

Runtime Environments, Flash, ActiveX components,
Microsoft Silverlight and others. The third-party plug-
in must be installed and maintained on the users de-
vice which is a compromise of the cloud computing
ideal of being able to seamlessly provide applications
as a service. Another aspect of third-party plug-ins
are that the plug-ins can be proprietary and conflict
with distribution licensing of the many different poten-
tial platforms. A security aspect of third-party plug-
ins are that they provide additional attack-vectors for
remote-code execution. Since third-party plug-ins pro-
vide additional access to local res sources they are also
vulnerable to exposing local res sources when exploited.

Another approach to expanding the capabilities of
browser-based applications are to expand the capabil-
ities offered by the browsers themselves and to stretch
and combine current capabilities of the browser in new
ways to achieve the desired functionality. By doing
so the design goal of being able to seamlessly provide
applications as a service can be maintained.

The work in this report focuses on using the lat-
ter approach in an effort to engineer a browser-based
VNC-client, named jsVNC (JavaScript VNC). A VNC
client is not well-suited to be run in an Internet-browser
since it requires an efficient way to render a frame-
buffer on the clients device and it needs to commu-
nicate with a VNC server over TCP. An analysis is
provided in section 2l on how current Internet-browser
capabilities and current work-in-progress on expand-
ing Internet-browser capabilities can be combined to
obtain the functionality needed for the engineering of
jsVNC.

Engineering the browser-based application is how-
ever not the only challenge in engineering a cloud-based
network application. The browser is only a facilitator
for providing the client-side application as a service to
the user. For a network client to be usable it must be
able to contact the corresponding server, establishing
end to end connections on the Internet is non-trivial.
The Internet consists of many hosts directly connected
to the Internet with a public IP-address establishing
connections to such hosts are trivial, the problem per-
sists in the many hosts on private networks connect to
the Internet but not accessible from the Internet due to
firewall restrictions and network address translators.

Existing tools and applications suites exist that can
be configured and combined to solve such issues but
doing so can be complex. The work in this paper doc-
uments a MIddleware For Connection Handling and
Orchestration (MIFCHO) unifies the connectivity and
protocol translation issues for cloud-based networking
applications in a simple solution.

The rest of the report is structured as follows. Sec-
tion [L1] describes the terminology used in this report.
Section describes the essential differences between
jsVNC/MIFCHO and similar VNC-clients and middle-
ware solutions. As previously mentioned then section
analyzes the possibilities and challenges with current
technology. Section Bl describes the architecture and
design of jsVNC and MIFCHO. Section [describes the
implementation of jsSVNC and MIFCHO. In section

the performance of jsVNC is evaluated and compared
to a traditional VNC-client, the section also discuss the
results of the experiments. Lastly a conclusion on the
work in this report is provided in section

1.1 Terminology

When referring to browser, Internet-browsers such as
Internet Explorer, Firefox, Google Chrome, Opera is
the programs referred to.

When mentioning modern browsers, these are ref-
erences to browsers that support the HTML5 canvas
tag.

1.2 Related Work

The work documented in this report can be separated
into three major problem areas. The first is the ac-
tual implementation of the VNC-client in JavaScript.
Second is the client-side libraries and protocol imple-
mented to emulate bidirectional communication and
third is the implementation of the middleware that sup-
ports the client-side code.

jsVNC is focused on not having any third-party
requirements and to function in a strict browser en-
vironment. Other approaches implement the entire
VNC-client as a third party component, such ap-
proaches include: TightVNC Java-Viewer[16](Java)
and FlashLight-VNCJ[4](Flash). Another approach is
to write the VNC client in JavaScript but rely on third-
party components via a bridging technique to enable
socket communication in JavaScript. Bridging tech-
niques include [8](Flash) or [22](Java).

jsVNC is more closely related to the two projects
CARDE[3] and Guacamole [2I]. Both of these projects
are like jsVNC implemented entirely in JavaScript
without relying on any third-party plug-ins.

CARDE however relies on the work-in-progress
of browser-based WebSockets[I9]. jsVNC also utilize
WebSockets when available but also implement an em-
ulation of WebSockets named Hobs which is used as
a fail-over in case the browser does not support Web-
Sockets.

jsVNC, CARDE and Guacamole all differentiate
in how they encapsulate protocol messages of the
RFB protocol. CARDE uses a JSON-RFB encapsu-
lation, Guacamole uses an XML-RFB encapsulation
and jsVNC does not use any encapsulation. jsVNC
does not use any encapsulation since which minimizes
message encoding and decoding overhead.

To support abstract communication in the jsVNC
implementation a communication library named HOBS
has been implemented. It implements a communica-
tion protocol similar in technique to BOSH[7]. The
MIFCHO middleware that translates HOBS and Web-
Sockets and aids client-server connectivity is related in
functionality to Kaazing Gateway[9] and Orbited[12].
It however also has an additional feature to support ac-
cess to firewalled resources similarly to Google SDC[G].
MIFCHO unifies solutions to the different connectiv-
ity challenges of browser-based applications in a cloud

context.

2 Analysis

The starting point for the analysis is to determine the
capabilities required for a VNC client. To uncover
this an in-depth analysis of the VNC application is
provided in section 21l In the succeeding subsection
the infrastructural challenges of cloud-based network
applications are analyzed and the limitations of the
Internet-browser are described.

Different techniques to overcoming limitations and
implementations thereof are described in subsections
23l and 24

At the end of this section the different challenges are
concluded upon and a recommandation for a solution-
model is provided which is used for the basis of the
architecture, design and implementation.

2.1 VNC Application

Virtual Network Computing (VNC) is an application
that provides the display of and interaction with, a
remote computer over a network. It does so by us-
ing client-server based communication where the server
sends display-output to the client and the client sends
mouse and keyboard input to the server.

Historically VNC was invented at Olivetti Re-
search Labs and was based on the Remote Frame-
Buffer (RFB[IT7]) protocol, currently VNC and RFB
are officially maintained by a company named Re-
alVNC. Many VNC/RFB implementations has been
engineered by others than the original creators and cur-
rent maintainers. Both proprietary and open-source
implementations exist with non-standardized exten-
sions to the original protocol. Offering more features
such as file-transfer[I5][18]. Even the official maintain-
ers of the RFB protocol provide proprietary VNC im-
plementations.

A VNC implementation named TigerVNC[14] has
a high focus on improving the performance of VNC
and also provide a community maintained RFB spec-
ification as an alternative to the official specification.
The contribution of the community maintained specifi-
cation is that it attempts to document and unify third-
party protocol extensions. Alternatives to VNC/RFB
are among others NomachineNX|[I1]/FreeNX[1] and
Remote Desktop (RDP[I0]).

Engineering all functionality of the community
maintained RFB specification is however out of scope
for this project. Since focus of this project is on the
challenges of engineering browser-based network appli-
cations and not with challenges of optimizing the VNC
application features and performance. It is however
worth noting for future work that a documentation for
many protocol extensions exists such that it can be
used in the further development of jsVINC.

The most essential messages (illustrated in figure [T
are frameBufferUpdate Request, keyFEvent, pointerFEvent
send from the client and frameBufferUpdate send from

the server. The essential idea of VNC/RFB is to send
the display of the server to the client in the form of
a frameBufferUpdate where the data representing the
display is encoded with one of the encodings supported
by both the VNC client and server. During a hand-
shake phase the server sends a set of supported en-
codings to the client and the client can choose to send
a subset of the encodings to the server to inform the
server of which encodings the client supports. The
server is not allowed to send updates with an encoding
that the client has not explicitly informed the server
that he supports. The RAW encoding however must
be supported by a valid VNC client and server, the
other encodings are optional.

FrameBufferUpdates with RAW encoding sends
display data as a BGRA-bitmap such a representation
requires high throughput capabilities of the underlying
network.

Server

Client
=

framebufferUpdateRequest

process

)Y

A

framebufferUpdate

keyEvent process

keyEvent

pointerEvent process

pointerEvent

_ OO vy

Figure 1: Essential messages of VNC/RFB.

In table[Ilan overview of the sizes of framebufferUp-
dates is given in megabytes and in table[2land overview
of the theoretical maximum amount of frameBuffer Up-
dates per second is provided. The updates are updates
of the entire display where the display has a resolution
as described in the head of the table and a color-depth
of 4byte per pixel. The tables gives an indication as to
what could be theoretically possible or impossible uses
of a VNC-client with RAW encoding.

If the VNC-client accesses a VNC-server play-
ing a video then this would require a frame-rate of
about 25fps for stutter-free playback. Playback of
HIGH-definition video is thus theoretically impossi-
ble. Low-resolution video might be possible when high-
throughput interconnects are available.

[[480x320 | 800x480 | 1024x768 | 1920x1200 |
[MB] 0585] 1.831] 3] 8.789

Table 1: Size of a single frame-buffer update with RAW
encoding.

| Mb/S | 480x320 | 800x480 | 1024x768 | 1920x1200

1 0.21 0.09 0.04 0.01
10 2.13 0.85 0.42 0.14
100 21.33 8.53 4.17 1.42
1000 218.45 87.38 42.67 14.56

Table 2: Theoretical maximum amount of frame-buffer
updates per second with RAW encoding.

Due to these high throughput requirements of RAW
encoding it might seem that VNC with RAW encod-
ing is useless on the Internet where interconnects can
be as slow 1-2Mbit. The general use of desktop does
however have much lower requirements to the rate of
updates and can even for many updates settle with only
updating small parts of the frame-buffer or re-use ex-
isting parts of the frame-buffer that the client already
have. The RFB protocol therefore support incremental
frame-buffer updates which only send a sub-rectangle
of the display to the client and by using the CopyRect
encoding the server can instruct the client to copy a
rectangle of the frame-buffer to different coordinates.
Such uses makes VNC viable on low-throughput in-
terconnects for uses such as text-editing, mail-reading,
file-browser and other common tasks.

Another aspect of the protocol design is that it is
asynchronous in message delivery. This might seem
counter-intuitive by the frameBufferUpdateRequest
and corresponding response in form of a frameBuffer-
Update. And it effectively means that a client send-
ing a frameBufferUpdateRequest should not expect a
frameBufferUpdate to arrive on the wire immediately
after. The sending of framebufferUpdates is regulated
by the server and the server chooses when to send the
frameBujffer Update message. Additionally the amount
of framebufferUpdates send by the server is less than
or equal to the amount of frameBuffer UpdateRequests.

This protocol property is however quite essential for
the implementation of a VNC client, the client must
decide upon a scheme for requesting updates and take
into consideration the throughput requirements when
deciding upon a polling scheme for the frameBufferUp-
dateRequests. The engineering of jsVNC is focused on
implementing the most essential messaging of the RFB
protocol to summarize this involves an application ca-
pable of performing the following:

Decode the rectangle-encodings of the frameBuffer-
Update messages.

Render the decoded rectangles on the local display
and copy an area of the frame-buffer to different
coordinates.

Grab local mouse input and transform them into
pointerEvent messages.

Grab local keyboard and transform keystrokes to
keyFEvent messages.

FrameBufferScheme Implement a sensible scheme
for sending frameBuffer UpdateRequests.

How jsVNC handles the above tasks are described in
section In the following sections the capabilities
of Internet-browsers to enable the exchange of RFB
protocol messages are discussed.

2.2 Infrastructural Challenges and

Browser Limitations

As described in the previous section then VNC/RFB is
a network based application and the RFB protocol sets
up some requirements to the throughput capabilities of
the interconnects. In addition to the requirements in?
duced by the VNC application itself then three esseni—i
tial challenges for engineering a cloud-based network

application are: 6
7

Deployment In the ideal of cloud computing thert
jsVNC should be provided as a service on-
demand, this poses some infrastructural chal-
lenges which are dependent on the architectural
choices which is described in further detail in sec-
tion Bl and section Ml

Connection-Establishment Cloud computing is
based on communication over the Internet, the
Internet provides a wide range of hosts identified
by public IP-addresses which a client can connect
to directly. The Internet however also facilitate
connectivity with other networks where the hosts
in the network do not have public IP-addresses
but are connected to the Internet via a gateway
and are therefore not directly available from the
Internet. jsVNC should able to connect to any
host on the Internet and any host on a different
network which is somehow connected to the In-
ternet. How connection-establishment is solved
is described in further detail in section Bland sec-
tion [l

Browser-Limitations The last essential challenge is
that a VNC/RFB client needs a reliable trans-
port protocol such as TCP to exchange messages
with the VNC server. Internet-browsers however
do not provide access to low-level communica-
tion primitives such as sockets via JavaScript.
The remainder of this section addresses this
problem and describes the communication prim-
itives available in JavaScript and different tech-
niques and implementations of techniques which
can potentially be used to emulate sockets in
JavaScript.

Browser does not provide low-level access to a socket
API but they do provide different means for net-
work communication based on the HTTP protocol
via JavaScript. Since RFB and HTTP are both
application-level protocols an initial idea is to find out

if the two protocols have enough similar characteris-
tics such that HTTP could be used to directly emulate
RFB by parsing the semantic meaning of HTTP mes-
sages differently. An example of this idea is to emulate
an RFB pointerEvent message in HTTP as illustrated
in figure 2

HTTP is a stateless protocol and the RFB proto-
col specification describes RFB as being stateless. The
state referred to in the RFB specification is the state
of the display on the remote screen, not of the proto-
col. The protocol itself is stateful and several messages
are send between client and server in the handshake
and initialization phase prior to sending frame-buffer
output.

POST /pointerEvent HITP/1.1

http—headers

button—mask: 00000000
x: 123
y: 321

Figure 2: Direct emulation of a RFB pointerEvent with
HTTP.

Another more pressing incompatibility is that the
HTTP protocol is based on a synchronous request/re-
sponse messages. The client sends a HTTP Request to
the server and the server then sends a HT'TP Response
back to the client. The HTTP Server is only capable of
sending data to the client in the response to HTTP Re-
quest, HTTP is in this sense one-way communication.
This poses a conflict with RFB protocol which is asyn-
chronous and it must be able to receive messages from
the server when data is available such as framebuffer-
Updates and serverCutText messages, RFB requires
bidirectional asynchronous communication. It there-
fore does not seem feasible to directly emulate RFB by
applying a different semantic meaning to HTTP mes-
sages. Another approach to establishing bidirectional
communication must thus be found.

In the following sections two different approaches to
obtaining bidirectional communication are described.
One approach is based on using different techniques
to emulate asynchronous bidirectional communication
based on synchronous HTTP. The other approach is
based on current work in progress of standardizing
a browser-supported communication protocol enabling
bidirectional communication.

2.3 Techniques

As previously described then the currently available
methods of communication is based on the synchronous
HTTP request/response messages. When a page is
loaded in the browser it is retrieved by a HTTP re-
quest and all resources in the retrieved document is
retrieved by further HTTP requests.

To improve the loading time of a page browsers use
a combination of HTTP-pipe-lining and utilizing mul-

tiple underlying TCP connections. With HTTP-pipe-
ling a client sends multiple HT TP requests before wait-
ing for the corresponding responses. The advantage of
HTTP-pipe lining is that the server can process mul-
tiple requests concurrently it must however still return
HTTP responses in the same order as the correspond-
ing requests were received. The browser can use mul-
tiple underlying TCP connections to partition the set
of the HTTP requests, the amount of underlying TCP
connections is implementation specific but has histori-
cally been limited to two connections per domain, more
recently this limit has been increased to six underlying
TCP connections.

The problem is that once the browser has retrieved
the current document and resources referred to within
the document then the server will not send anymore
data to the client.

The techniques for initiating retrieving data after
the page is finished loading are two-part they use some
method to provoke a HTTP request and they utilize
features of the HT'TP protocol to avoid polling for data
but instead let the server push data to the client when
data becomes available.

2.3.1 Initiate Retrieval

The techniques for retrieving data from the server
evolve around using JavaScript to dynamically add ele-
ments to the current document by expanding the Doc-
ument Object Model (DOM). The element added must
as a side-effect require the retrieval of a resource. This
can be accomplished by adding an IFRAME to the
DOM which will result in a HTTP GET request to
the URL in the IFRAME’s SRC tag. The retrieved
document will then contain a piece of JavaScript code
that will be executed upon retrieval. It is a bit more
involved to send data to the server using this method
but it can be accomplished by expanding the DOM
with a IFRAME containing a FORM element, popu-
late the FORM with the data that one wants to send
and submitting the form.

Another approach is to use the XML HTTP Re-
quests (XHR), XHR support asynchronous execution
of HTTP request by providing a simple interface for
constructing requests, sending them and binding event-
listeners for responses.

2.3.2 Server Push

When a technique for performing HTTP-requests is
chosen a technique for enabling the server to push data
to the client instead of forcing the client to poll for data
must be decided upon. Two different techniques re-
ferred to as Hanging Get / Long Polling and the other
HTTP Streaming can be used.

Long Polling involves creating a loop of HTTP re-
quests and letting the server wait with sending it’s re-
sponse until it has data ready. This is essentially still a
polling method but with a poll cycle that matches with
data being available. The clear advantage is that no
unnecessary requests are invoked. There is however a

practical limitation as to how long the poll cycle can be
allowed to wait. Since the normal behavior of a HTTP
request/response is that the server will start sending
the response as soon as it has received the client re-
quest, when intermediaries such as HTTP proxies sees
a HTTP response not sending any data they can choose
to close the connection based on a timeout parameter.
When using the long poll method it is thus a good prac-
tice to negotiate a cycle timeout value which is lower
than the most common HTTP proxies. By doing so
the Long Poll will simply send an empty response and
the cycle will execute another Long Poll.

The HTTP Streaming approach utilizes HTTP
Chunked encoding. A Regular HTTP response sends
data to the client by adding a content-length header
describing the length of response-body. With Chunked
encoding the content-length header is skipped and the
response body is send in chunks. Where each chunk is
prefixed with a textual length indicator. The intention
of chunked encoding is to support sending responses
where the total size of the response is unknown, but
it is intended to send finite length responses. There-
fore the chunked-encoding has a way to indicate that
current chunk is the final chunk. It is therefore not a
true data stream of infinite length as the name HTTP
Streaming indicates but it can be emulated to behave
as an infinite stream by never sending the final chunk.

There are many advantages to the HTTP Stream-
ing vs Long Polling, it can be used for both GET and
POST requests, which means that it can be used to
emulate a stream from both server to client and also
from client to server. There is also a much smaller over-
head for each message send with chunked encoding, the
only overhead is the chunk-size indicator where Long
Polling has to ship the entire HT'TP request-line and
headers for each payload.

HTTP Streaming however has a big disadvantage
that intermediaries such as proxies are likely to alter
lengths of chunks and buffer chunks until they see the
final chunk indication or until an output buffer is filled.
Even when no proxies interfere with chunked encod-
ing then browsers can behave in the same manner,
such that instead of pushing small amounts of bytes
to the browser for rendering. Instead they wait un-
til there a buffer-threshold is exceeded. Such behav-
ior is critical for many networking applications that
send many small messages during handshaking/initial-
ization phases such as the RFB protocol.

2.4 Technique Implementations

An umbrella term comet has been proposed by software
engineer Alex Russel[13] for identifying the previously
described techniques. Multiple different implementa-
tions of the comet-techniques exists with varying de-
gree of generality and applicability. Two approaches
stand out: Bayeux and BOSH[T7].

Bayeux is protocol specification for comet-based
communication with a wide variety of supported im-
plementations. BOSH is a standardization of bidirec-
tional communication using synchronous HTTP, it has

AW N =

been developed by XMPP primarily for use with their
chat program Jabber since they needed a way to create
browser-based clients and also to have a way to tunnet
their other protocols over HTTP for firewall traversalz

2.4.1 Bayeux

© w N o

Bayeux offers a higher-level communication protoes
col related to the publish / subscribe communicatiol
paradigm. It provides a means for web-application dé;
velopers to implement applications using the semantigs
of publishing and subscribing events and abstracts all
the lower-level issues of the comet techniques. ij

A message in Bayeux is specified in JSON and has a
set of reserved fields (channel, clientld, id, data, advice,
ext, successful, error) of which only the field channel
is mandatory. An example of the specification of a
Bayeux message is provided in figure x.

{

channel:
data:

}

"/a/channel",
"Message payload/Arbitrary Object"

Figure 3: Example of Bayeux Message.

The channel field defines a
channel between client and server, special meta-
channels exists for performing protocol hand-
shake(/meta/handshake), event subscription/unsub-
scription (/meta/subscribe|unsubscribe).

communication-

Bayeux is very well-suited for implementing new
applications in browser compatible with the publish /
subscribe paradigm. Bayeux is maturing and is sup-
ported by Java servers such as Jetty.

2.4.2 BOSH

Where Bayeux defines a higher-level publish/subscribe
protocol BOSH attempts to stay low-level and instead
emulate the semantics of a regular long-lived TCP-
connection based on an efficient use of multiple syn-
chronous HTTP request/response pairs without the re-
lying on chunked responses.

Where the Bayeux protocol supports many different
Comet-based transports BOSH focuses only on Long
Polling and using specific utilization of Long Polling
described as the BOSH Technique.

Messages in BOSH are not wrapped in JSON as
with Bayeux but wrapped in HTML <BoODY /> ele-
ments where the attributes of the element are message
fields. An example from the BOSH protocol specifica-
tion is provided in figure [l

BOSH has some very strong requirements
which make it wusable in environments such as
mobile/browser-based clients, compatibility with prox-
ies that buffer partial responses, backwards compati-
bility with HTTP/1.0, usable in environments where
access to HT'TP-headers is denied and many others.

POST /webclient
HTTP/1.1
Host: httpcm .jabber.org

Accept—Encoding: gzip, deflate
Content—Type: text/xml; charset=utf—8
Content—Length: 104

<body content=’text/xml; charset=utf—8’
hold="1"

rid="1573741820"

to="jabber.org’

route="xmpp: jabber.org:9999°

ver="1.6"
wait='60"
ack="1"

xml:lang="en’
xmlns="http://jabber.org/protocol/httpbind’

/>

Figure 4: Example of a BOSH message.

2.5 Wire Protocols

The previously mentioned techniques and implementa-
tions thereof have come into existence due the the fact
that browser are not capable of performing commu-
nication in the way that web-developers need modern
web-applications to communicate. The above are one
approach to solving the problem of missing commu-
nication another approach is to expand the browsers
capabilities.

2.5.1 WebSockets

The protocol is a simple text-oriented frame-based pro-
tocol, connection setup is initially done by the client
sending an initial handshake message compatible with
HTTP. WebSockets are not like raw TCP based sock-
ets, TCP based sockets supports streaming where Web-
Sockets are frame-based. Each frame/message send on
a WebSocket has an initial frame-type header followed
by the payload and depending on the frame-type also
a end-of-message character.

The frames in the WebSocket-protocol closely re-
sembles the type of communication made available by
using chunked-encoding on HTTP requests. WebSock-
ets however has two clear advantages to the Chunked
Encoding technique, they are truly full-duplex requir-
ing only one socket for sending and receiving. Also
WebSockets are a standards initiative designed for the
purpose of bidirectional communication in the browser,
this means that practical implications such as proxies
should not choke the communication channel because
of misinterpretation of the data exchanged.

The protocol is work-in-progress and constantly
changing the latest version is available from [20].

WebSockets are work-in-progress but some
browsers have however has implemented different ver-
sions of the protocol draft. Firefox 3.7, Chromium,
Google Chrome has experimental WebSocket support
of what seems to be based on draft-specification 75.

1

2.6 Security Concerns

Traditional desktop applications are vulnerable to in-
correct memory-management which can be exploited
as attack-vectors for manipulating the behavior of the
application, crashing it or making it execute code re-
siding in other parts of system memory.

Browser-based applications are not concerned with
performing accurate memory-management since this is
handled by the browser. Browser-based applications
are however vulnerable to much simpler methods of
manipulating application behavior. One such attack
method is called Cross-Site-Scripting (XSS[24]), it ex-
ploits applications which does not filter user-input but
instead directly sends user-input to the browser for
rendering. This can be used to inject HTML, CSS,
JavaScript or Flash into the application which will then
be executed when rendered by the browser.

Imagine a social networking site which did not per-
form proper user-input checking, a malicious user could
inject JavaScript code into their profile page. Every
visitor watching the profile page would then execute
the JavaScript code injected by the malicious user,
which would enable the script to execute actions in the
context, of the victim, sending messages to everybody
in their social network with messages such as “you are
so foo, bar” or other messages that the victim probably
did not intend on sending.

Another common threat for browser-based applica-
tions are Cross-Site-Request-Forgery (CSRF[23]), it is
based on a hostile web-page creating fake requests for
a target website. Continuing with the example of the
social networking site. A CSRF can be composed by
providing image on a hostile site performing a forged
request on the social-networking site.

<img src='http://social —networking/
updateStatus?status=iAmSoFooBarToday’ />

To protect against such attacks browsers implement
Same-Origin access policies.

2.7 Frame-buffer Rendering

When the complex issues of enabling browser-based
bidirectional communication has been solved an
equally important problem must be handled: how to
efficiently render rectangles of frameBufferUpdates in
the browser?

Browsers are capable of efficiently rendering images
in form of tags and browsers support decod-
ing images of different file formats such as: PNG, GIF,
JPEG and some variations of 16bit bitmaps. The 32bit
BGRA representation of the RAW encoding using true-
color is however not supported. One approach would
be to do real time conversion of the RAW encoded
rectangle format such as JPEG or PNG. Doing so in
JavaScript would probably be too demanding. Another
approach would be to let the middleware perform real-
time encoding of rectangles, such a solution has some
interesting perspectives.

The middleware could be applied in other scenarios
where a native VNC-client supports more advanced en-

codings such as the Tight VNC encoding which is based
on JPEG compression. The TightVNC encodings-
scheme provides a trade-off between CPU utilization
and throughput requirements. By significantly lower-
ing the throughput requirements but also requiring a
much higher CPU-utilization on the VNC server. By
providing encoding in the middleware the VNC server
could use the simple RAW encoding and offload the
expensive JPEG compression to the middleware.

Such a solution based on tags would
however handle incremental frameBufferUpdates and
CopyRect encodings poorly since there is no means for
copying a subrectangle of the image contained within
the tag.

Another approach would be to use the <CANVAS>
tag which is made available in HTMLS5, the canvas sup-
ports efficient operations on such as putImageData and
getImageData to copy sub-rectangles and do partial
updates of the frame buffer.

2.8 Conclusion

A combined summary of the challenges are provided
as a list of recommendations for the Architecture, De-
sign and Implementation of the cloud-based network
application jsVNC.

Choosing a method for obtaining bidirectional com-
munication is quite essential, WebSockets are promis-
ing they provide a low-overhead and fully bidirectional
communication primitive with a clean API. They are
however work-in-progress and not very widely support
so it would be recommended to create a minimalistic
communication library in JavaScript which provide a
fail-over when WebSockets are not available. This fail-
over library could take advantage of the BOSH speci-
fication. BOSH is quite attractive since it is designed
to work in a very strict browser-environment and could
thus provide for a robust alternative to WebSockets.

The approach of letting middleware handle real-
time encoding of frameBufferUpdate rectangles has
some interesting perspectives but lack support of copy-
ing sub-rectangles. The idea of off-loading middleware
could provide potential food for though for future work.
The canvas element seems like a better recommenda-
tion for this project and if the browser does not natively
support it the ExCanvas[5] project could be used a fail-
back.

Want to use Canvas, since we rely on canvas,
browsers which are new enough to support canvas will
also support XHR. However support for WebSockets
is still very limited since it is constantly changed so a
fallback communication protocol when WebSockets are
not available.

3 Architecture & Design

The architectural considerations and design-choices are
concerned with client-server connection establishment
and enabling browser-based bidirectional communica-
tion.

The challenges in client-server connection estab-
lishment are that network address translators (NAT)
hinders a client from directly establishing a connec-
tion to a server behind a NAT-enabled device, since
NAT only translates outgoing connections. The sim-
plest solution is to let the NAT-device forward all traf-
fic on a specific port to the server. Such an approach
is however quite cumbersome since it requires access
to a device which is likely to be out of administra-
tive scope. Another solution is to use hole-punching,
a technique used by UDP-based peer-to-peer applica-
tions such as VOIP, real-time-games and others. Hole-
punching techniques however rely on implementation
specific properties of NAT-devices which make them
slightly unstable. Work[2] has been made to adapt
hole-punching techniques to TCP, their results show
that only 64% percent of the tested Nat-devices sup-
port the TCP-hole-punching techniques.

Since browsers are not able to establish raw sock-
ets but rely on WebSockets or Comet-based to enable
bidirectional communication. Thus a means for per-
forming protocol-translation from WebSockets/Comet-
based communication to raw sockets must be provided.
This could architecturally be placed as the responsibil-
ity of the VNC server, by expanding the implementa-
tion of the VNC server to be able to run RFB on top
of WebSockets/Comet-based communication. The ad-
vantage to this is that jsVNC could connect directly
the VNC server without requiring an intermediary to
translate protocols. Two architecturally different solu-
tion models could be applied in aiding jsVNC:

Decentralized use hole-punching-techniques as de-
scribed in [2] for establishing client-server com-
munication and implementing protocol transla-
tion in the VNC server.

Centralized use a middleware platform for protocol-
translation and aiding client-server communica-
tion.

The labeling of a centralized vs decentralized archi-
tecture is referring to a centralization of the concerns
vs decentralization of the concerns. There is nothing
that prevents the middleware platform from being im-
plemented in a distributed fashion. The main criteria
that marks the architecture as centralized is that all
the concerns are centralized in the middleware and not
decentralized to be handled by the VNC client and
server.

The work in this project is based on a centralized
middleware architecture which primary purpose is to
perform protocol translation as illustrated in figure
and to aid connection establishment as illustrated in
figure [6

POST http://mifcho-01:8080/hobs/session/<session_id>
Content-Length: X

base64(<payload>)

= ~. - —)
——s5 N~ /v' — o
jSVNC \\ Extract <payload> _/" VNC Server
with Hobs '\~ - ! _.~"<payload>

PN

-7 N ~~.__ <payload>

MIFCHO -

L " L

e—YJa e

jSVNC
with Websocket

0x00 base64(<payload>) Oxff rl

VNC Server

Figure 5: MIFCHO primary purpose: protocol trans-
lation.

VNC Server

Figure 6: MIFCHO secondary purpose: aiding client-
server connection establishment.

10

4 Implementation .
The implementation of jsVNC is multi-part, imple-
menting the actual VNC application is only a small
part of the total required engineering effort. The com-
bined engineering effort consists of:

Web-Application The actual jsVNC browser-based
application consisting of HTML, CSS and
JavaScript that forms the graphical user-interface
and implementation of the RFB protocol. The
implementation is described in section

Bidirectional-communication library and protocol
must be implemented since WebSockets at the
time of writing are labeled as work-in-progress
and therefore have very limited browser-support.
Therefore a fail-back for providing bidirectional-
communication must be implemented in form of
a protocol definition and a JavaScript library to
support it. The JavaScript communication li-
brary and protocol is named Hobs its implemen-
tation is described in section E.11

1

Middleware must be implemented to support the ar-
chitecture described in section[Bl The implemen-
tation responsible for these things is named MIF-
CHO (Mlddleware For Connection Handling
and Orchestration) and its implementation is de-
scribed in section A3

4.1 Hobs

Hobs provides a fail-back for bidirectional communi-
cation when the browser does not support WebSock-
ets. Hobs is interface compatible with the WebSocket
interface described in [19], this provides for a means
of using Hobs as a drop-in replace in an application
using WebSockets to provide backward compatible op-
eration. And it is designed to be just that, a simple
implementation of a WebSocket.

Hobs uses two concurrent TCP connections to ob-
tain bidirectional message exchange, one connection for
sending messages from client to server as described in
section .T.3 and another connection for server to client
messages as described in section Two connec-
tions are necessary since Hobs uses the Long Polling
technique in order to be able to receive data. If one
only connection was used then the send of a message
would have to wait for the Long Poll to finish and
hereby adding a high amount of latency for sending
data. Therefore two connections are used, one for client
to server messages and another for server to client mes-
sages.

Where other comet implementations/protocols en-
capsulate meta-data in the HTTP body and encoding
it in either JSON(Bayeux) or XML(Bosh), Hobs encap-
sulate meta-data in the HTTP request-line and reserve
use of the HTTP body only for payloads. The naming
convention used by Hobs is illustrated in figure [

11

/<prefix >/<msg_id>/<argl>/<arg2>/.../ <argN>

Figure 7: Meta data path encapsulation.

Each item of meta-data is therefore separated with
a“/”. All Hobs meta-data has <prefix> which is used
used as a namespace-separator such that Hobs can co-
exist with web servers and other uses of the HT'TP pro-
tocol on the same host and port. <msg id> identifies
the type of messages carried, valid message-identifiers
are “create” and “session”. The message-identifier is
followed by N arguments.

4.1.1 Session Creation

GET /hobs/create/<rid >/<wait>/<ep host>/<
ep port> HITP/1.1

The Hobs meta-data for initialization consists of a
prefiz followed by the message-identifier create indi-
cating session creation and the arguments request 1id,
wait, endpoint _host, endpoint_port and an optional
mifcho_id. An example of the session creation re-
quest/response is provided in appendix [Bl

The session creation argument request id is an ar-
bitrary integer which will be incremented for each mes-
sage send from Hobs, the request id is meant to be
used on the server-side as a way to order incoming mes-
sages to ensure correct ordering. The wait argument is
an integer larger than zero that informs the server-side
how long it should wait in seconds before timing out
a Long Poll. endpoint_host, endpoint_port together
identify the address of the host which the client wants
to communicate with.

The optional mifcho_id can be used to indicate
that the endpoint address should be contacted via an-
other MIFCHO instance identified by mifcho id. This
will establish a tunnel between the current MIFCHO
instance and the MIFCHO instance identified by mif-
cho_id.

The meta-data of the session creation request just
described is delivered to the MIFCHO instance encap-
sulated in the PATH part of the request-line of a HTTP
GET request as illustrated in figure 8 When the MIF-
CHO instance receives the creation-request it will at-
tempt to establish a socket to the endpoint specified. It
will upon success return a HT'TP Response with a ses-
sion__id in the body. The session _id is a unique inte-
ger generated by the MIFCHO instance which identify
the session created.

1

Hobs Browser Mifcho Endpoint
connect(URL) |
GET /HobsMeta/ HTTP/1.1 - 1
Ll .
socketinit | |5
| TP 200 OK - Sessionid 1 s
{ 4
rect_loop() -
7| GET /HobsMeta/ HTTP/1.1 N
>
5Wait
v v v \4

Figure 8: Hobs initialization.

Hobs will on retrieval of the session_id initiate a
RECV _LOOP implementing a Long Poll which is de-
scribed in the following section.

4.1.2 Server to Client Messages

GET /hobs/session/<sid> HITP/1.1

After the session creation the server will send pay-
loads to Hobs encapsulated in the response to a GET
request, Hobs provides meta-data in the HTTP GET
requests in the form a prefiz, the message-identifier ses-
sion and finally a session_id retrieved during session
creation. An example is provided in the appendix sec-
tion

To ensure a constant stream of data from the server,
Hobs sends the GET requests in a Long Polling loop
as illustrated in figure @l When a payload is received
Hobs immediately executes the RECV__LOOP function
again to retrieve further payloads. Additionally Hobs
executes the function bound to ONMESSAGE.

Notice that the MIFCHO instance can wait in two
scenarios, either waiting endpoint payloads or wait for
a GET request in which to send the payload. When
waiting for endpoint payloads MIFCHO needs to im-
plement the Long Polling timeout but equally impor-
tant is it for MIFCHO to support buffering of payloads
when waiting for Hobs GET requests. Buffering should
be bound by an upper limit such data does not clog up
at the intermediary.

Hobs Browser Mifcho Endpoint
recv_loop() N
GET /HobsMeta/ HTTP/1.1 -
Ll
5Wait
Wi PLO
» HTTP 200 OK - PLO
)
<& PL1
)
&
<
Q onmessage(PLO)
Wait
recv_loop() N
71 GET /HobsMetas HTTP/1.1 N
Ll
> HTTP 200 OK - PL1
)
&
<
H)onmessage(PLl) H H H
\4 \4 A\

Figure 9: Hobs receiving two payloads PLO and PL1
from endpoint to Hobs.

12

4.1.3 Client to Server Messages

POST /hobs/session/<sid>/<rid+1>/ HITP/1.1
Content—Length: <payload length>

<payload>

Payloads send from client to server are encapsu-
lated in HTTP POST requests with Hobs meta data
consisting of a prefiz, message-identifier session, ses-
sion_ id/sid identifying the Hobs session and an incre-
mentation of the request id/rid. A short example is
given in the figure above and a more elaborate exam-
ple is provided in the appendix section [B.2.

The handling of the HTTP encapsulation is illus-
trated in figure where two payloads PLO and PL1
and send from Hobs. When MIFCHO receives the
POST request it extracts the payload and forwards it
to the endpoint. Notice that the HT'TP response to the
HTTP POST occurs immediately and does not provide
any information on the delivery of the payload to the
endpoint. The HTTP Response is only an indication
of whether MIFCHO will eventually forward the pay-
load and as the figure shows then the actual forward
can occur immediately prior to the HTTP Response of
later after the HTTP Response has been sent.

Hobs is limited to only use two underlying connec-
tions, Hobs therefore counts the amount of outstand-
ing POST requests, if a POST is currently ongoing the
send will store the payload in an output buffer. When
the ongoing POST returns it will immediately POST
all payloads in the output buffer.

This behavior has the advantage that it lowers com-
munication latency when the JavaScript application
has a high frequency of small payloads. This occurs
in VNC when the client must update the cursor posi-
tion on the server in form of a pointerEvent.

Hobs Browser Mifcho Endpoint
send(PLO) N
POST /HobsMeta/ HTTP/1.1 - PLO |
Ll
PLO >
| HTTP Status Msg
)
&
T~
send(PL1) N
7| posT /HobsMeta/ HTTP/1.1 - PL1 ||
Ll
| , HTTP Status Msg
<
i PL1 -
) Ll
v v \4 \4

Figure 10: Hobs sending two payloads PLO and PL1
from Hobs to endpoint.

4.2 jsVNC

jsVNC is organized into multiple layers as illustrated in
figure [Il The lower layers consists of an implementa-
tion of the Hobs protocol as described in the previous
section. The logic required for VNC/RFB messages
are encapsulated in its own layer and is built on top of
the Hobs library and WebSockets to provide the bidi-
rectional communication primitive. It uses a simple
method to check which communication method to in-
stantiate by simply checking for availability which is
done i JavaScript as illustrated in figure

jsVNC

GUI
HTML/CSS/JavaScript

Vnc
Hobs / Websocket

jQuery

Figure 11: Layered structure of jsVNC.

Many different frameworks for aiding JavaScript
application development exists to name a few Google
Web Toolkit (GWT), jQuery, Prototype etc. The lower
layers of jsVNC are not coupled to any frameworks
since it would greatly reduce portability and inter-
operation of jsSVNC, It is only the top-level binding
of HTML elements to JavaScript events which utilize
a framework. This means that Hobs and Vnc can be
reused in different projects and integrated with other
browser-based applications without enforcing the use a
any particular framework.

if ("WebSocket" in window)
else if ("Hobs" in window)
else return false;

{}
{}
Figure 12: Checking for capabilities in JavaScript.

An overview of the code layout can be inspected
in table M the list of essential capabilities of an VNC-
client which was derived in section [2.] is reproduced
here with a description of how the capabilities are
implemented. A complete overview of the feature-
completeness of jsVNC is provided in table [Bl

Decode the rectangle-encodings of the frameBuffer-
Update messages.
This task is handled by the process_buffer in the
Vnc layer. Based on the type of encoding used
different methods are executed, for the RAW
encoding the function draw_rectangle is used.
Draw_rectangle basically decodes the RAW en-
coding by transforming the BGR representation
to RGB and at the same time converts the byte-
data to a numerical number which the canvas el-
ement can understand.

13

Render the decoded rectangles on the local display

and copy an area of the frame-buffer to different
coordinates.
This task is also handle by the draw_rectangle
method for RAW encoding and for incremental
frameBufferUpdates. But the essential part is
that the frame-buffer uses the canvas tag to ren-
der the frame-buffer.

Grab local mouse input and transform them into
pointerEvent messages.
This task is handled by catching all onmouse-
move, onmousedown and onmouseup events and
update a global representation of the state of
mouse, including position on screen and the bit-
mask of buttons pressed. This is done to provide
a data structure which can be use to poll for the
current state of the mouse, this is needed to send
correct, pointerFEvents. When receiving onmouse-
move events the current state of the buttons are
unknown if jsVNC in these situations send the
incorrect bitmask then features such as drag-and-
drop would not be possible.

Grab local keyboard and transform keystrokes to
keyFEvent messages.
The keyFEvent message is easily mapped to the
onkeyup/onkeydown events since the keyEvent
message simply consists of a down flag indicat-
ing whether the key was pressed or released and
the key itself. The keyFEvent message is how-
ever only partially implemented since it requires
a manual mapping of an browser-specific integer-
values representing a key and the keysym that
the VNC server will interpret. The overlapping
set of characters are only the alphanumeric char-
acters in the ASCI char-set.

FrameBufferScheme Implement a sensible scheme
for sending frameBuffer UpdateRequests.
This tasks is implemented by the four_poll func-
tion it uses a global FburPoll structure with
the fields frequency (int) and polling (bool).
fbur _poll calls itself recursively as long as Fbur-
Poll.polling is true, each recursive call is delayed
FburPoll.frequency seconds by the use of the set-
Timeout method.
Only the first frameBufferUpdate request is a full
request, every succinct request is incremental.
It was found that prepending a pointerEvent to
each frameBufferUpdate improved user-perceived
performance.

User perceived performance is difficult to measure but
one fact is that users expect that interacting with a
system would result in a some sort of reacting within a
short period of time. If the too long time passed before
the application responds with any type of feedback the
behavior is interpreted as an error by the user. With
RFB this requires that the polling cycle matches with
the exact time of when something changes on the server
display.

This is very hard to predict on the client side, ex-
cept for the case when the client does something that
could lead to changes in the frame-buffer, such as mov-
ing the mouse over an graphical element with hovering
effect.

To achieve good user-perceived experience this
could be taken advantage of such that each point-
erEvent generated by mouse movement is send together
with a frameBuffer UpdateRequest.

This might seem like an excessive amount of up-
date requests and one concern is that frameBufferUp-
dateRequests are 10bytes in size and pointerEvent are
only 6bytes in size. Using this technique would indi-
rectly increase the message-size of each pointerEvent
with 7166 percent.

However the Hobs Encapsulation requires about
513bytes in HTTP Request-line and headers, the ac-
tual message-size increase when bundling pointerFvent
and frameBufferUpdateRequest is therefore neglect-
able due to the protocol overhead of Hobs.

Using Hobs and WebSockets increases the lengths
of messages due to payload encapsulation. Payload
encapsulation is required in order to safely transfer bi-
nary data over XHR requests in environments where
the browser does not allow the client to the change
of the HTTP-headers and therefore cannot change the
mime-type to application/raw. WebSockets also need
to perform payload encapsulation, the protocol specifi-
cation describes a binary framing type, the WebSocket
API however does not provide for at any means to en-
able the use of the binary framing.

Therefore both WebSockets and Hobs use a base64
encoding of payloads to ensure safe transfer. Base64
encoding induces an overhead on the payloads since it

transforms three bytes into four and if the message is
not a multiple of 3 padding must be used.

It is not possible to accurately define the overhead
of Hobs since the HTTP request-line and headers dif-
ferentiate depending on the browser and the

| CHAP. | Feature | Status |

6.1.1 Handshake - Protocol Version | OK

6.1.2 Handshake - Security OK

6.1.3 Handshake - Security Result OK

6.2.1 Security Types - None OK

6.2.2 Security Types - VNC Auth. | -

6.3.1 ClientInit OK

6.3.2 ServerInit OK

6.4.1 SetPixelFormat OK

6.4.2 SetEncodings OK

6.4.3 FrameBufferUpdateRequest OK

6.4.4 KeyEvent PARTIAL
6.4.5 PointerEvent, OK

6.4.6 ClientCutText -

6.5.1 FrameBufferUpdate OK

6.5.2 SetColourMapEntries OK

6.5.3 Bell OK

6.5.4 ServerCutText OK

6.6.1 Encodings - RAW OK

6.6.2 Encodings - CopyRect OK

6.6.3 Encodings - RRE -

6.6.4 Encodings - Hextile -

6.6.5 Encodings - ZRLE -

6.7.1 PseudoEncodingCursor PARTIAL
6.7.2 PseudoEncodingsDesktopSize | OK

Table 3: Feature-completeness of jsVNC.

| Component | Path | Description |
Vnc js/vnc.js Implementation of RFB messagehandling, sending and GUI bindings
Hobs js/hobs.js Implementation of bidirectional Hobs protocol.
jQuery js/jquery.js Framework for aiding the graphical user interface.
GUI vnc.html HTML and JavaScript for instantiating and binding Vnc to Html elements.
CSS css/*.css Stylesheets for HTML presentation.
Images images/*.png | Images used in the graphical user-interface.

Table 4: Organization of jsSVNC code.

4.3 MIFCHO

The idea of MIFCHO is to provide middleware for over-
coming the client-server communication establishment
issues and protocol translation from Hobs/WebSock-
ets to raw sockets, enabling browser-based bidirectional
communication with endpoints being available on the
Internet or on private networks connected to the Inter-
net.

The following is a description of the abstract orga-
nization of MIFCHO after-which a section is provided
describing the MIFCHO protocol which enables daisy-
chaining of MIFCHO instances which is the key enabler
to solving the connectivity issues. Lastly in section
a brief description on how to use MIFCHO is provided.

MIFCHO is written entirely in Python. Python has
many frameworks to accelerate development and ease
the maintenance of networked applications. The third-
party Twisted framework is a popular choice and so
is the built-in SocketServer framework. In the early
stages of development both frameworks were experi-
mented with to see how they could assist the develop-
ment. It was found that both provide too many layers
of indirection, MIFCHO is generally concerned with
providing a means for managing outgoing connections
and to bind on sockets and handle incoming connec-
tions to sockets. Instead of using one of these existing
frameworks MIFCHO is implemented as a minimalis-
tic and specialized framework based on the experience

14

gained from using Twisted and SocketServer. MIF-
CHO tries not be a framework useful for any type of of
network-application such as Twisted and SocketServer.
It is instead simply a decoupling of the issues of han-
dling (binding, listening, accepting and tearing down)
sockets/connections, and to obtain concurrent process-

ing of multiple sockets/connections by using threads.
This is done such that implementing the application-
specific logic, such as writing WebSocket to socket
translation can focus on just that without being dis-
tracted about implementation issues regarding concur-
rency, connection binding/listening and shutdown.

ConnectionManager

Opened Sockets

Bound Sockets

Peers

Tunnels

- load_services()

- teardown(conn)

- add_peer(peer)
- get_peer(peer_id)
- get_any_peer()

- socket_bla(address, dispatcher)
- connect(address, peer_id, use_tls)

HTTP - Dispatcher

1) Parse request-line
of HTTP Request.

2) Determine acceptor-type
based on address and
request-line.

3) Put conn and request-line
into work_queue of
the chosen acceptor-type.

HTTP-Acceptors

Hobs

WebSocket

Peer

StaticWeb

Management

TCP - Dispatcher

1) Determine Acceptor based
on address the parameters
associated with the address.

2) Put conn and address into
the chosen acceptors

_|
®)
o
>
I
0
[0}
gl
=
o
=
0

TCPTunnel

TCPForward

work_queue.

MIFCHO

Figure 13: Abstract organization of MIFCHO.

The framework part or non-application-specific
part of MIFCHO consists of the classes Connection-
Manager, Connector, Acceptor, Piper, Connection.
The organization of MIFCHO is illustrated in figure
I3

The ConnectionManager is a central entity that
provides helper functionality for establishing outgoing
connections via the connect() method and to bind/lis-
ten/accept incoming connections via the socket bla()
method. The ConnectionManager holds references
to all bound and opened connections and provide§1
a means for gracefully tearing down connections via
the teardown() method. The ConnectionManager also
maintain lists of Peers and Tunnels. Peers are other
MIFCHO instances which the ConnectionManager can
use to create connections through. Tunnels are lists of
connection pairs (A, B) where the output of connection
A is copied to the input of connection B and the output
of connection B is copied to the input of connection A.

Acceptors contain application-specific logic. An ac-
ceptor is based on the well-known design pattern of a
worker-pool. Work in the context of MIFCHO consists
of a 3-tuple/triplet on the form:

15

(conn, address, aux)

Where conn and address are the result of a
socket.accept() call with the addition that the conn
is a socket encapsulated in a Connection object. aux
provides for auxiliary data.

A skeleton example of implementing an acceptor is
provided here:
class MyAcceptor (Acceptor):

def work(self, job):
(conn, address, aux) = job

For the reader familiar with the SocketServer
framework distributed with Python then Acceptors are
similar to RequestHandlers. Specifically the work()
method of an Acceptor is equivalent to the handle()
method of a RequestHandler.

There is however substantial difference in the life-
cycle of RequestHandler and Acceptor objects and in
their coupling to the source producing the connection
which they “handle” or “work”.

Dispatchers are the glue between the Connection-
Manager and the Acceptors. Dispatchers take ingoing

connections as input and contain the logic to route the
ingoing connection to the appropriate Acceptor and to
create the work triplet described earlier. The aux part
of the work-triplet can be used to provide additional
data to the Acceptor. MIFCHO has two dispatchers
(TCPDispatcher and HTTPDispatcher) implementing
different, dispatching strategies, most interesting is the
HttpDispatcher. It dispatches request to different Ac-
ceptors based on the request-line of an ingoing connec-
tion containing a HTTP Request. This strategy makes
it possible in a simple way to have multiple different
uses of the HTTP protocol on the same (host, port)
pair.

MIFCHO has several Acceptors the Hobs and Web-
Socket Acceptors performs protocol translation from
Hobs/WebSocket to raw sockets. Acceptors however
are not limited to doing protocol-translation, MIFCHO
has three other Acceptors: Peer, StaticWeb and Man-
agement. Peer acceptor implements part of the proto-
col described in the following section, Static Web imple-
ments a simple WebServer serving static files, Manage-
ment provides performance data such as CPU utiliza-
tion of the MIFCHO instance. The Static Web Acceptor
provides a convenient way to distribute the jsVNC web-
application while maintaining same-origin compliance.

These Acceptors are all based on the HTTP pro-
tocol, two other acceptors exists with the purpose of
providing simple TCP forwarding and Tunneling.

The final entity in MIFCHO are the Connectors, a
is the reverse of an Acceptor. Instead of waiting for
incoming connections the Connector itself established
outgoing Connections. MIFCHO contains one Connec-
tor, the PeerConnector implements the other part of
the MIFCHO protocol.

4.4 MIFCHO Protocol

The primary purpose of the MIFCHO protocol is to
enable distinct MIFCHO instances communicate and
establish connections via each other.

MIFCHO is a simple protocol with three messages:
handshake, tunnel-setup request and tunnel-setup re-
sponse. The MIFCHO protocol messages are encapsu-
lated in HTTP in an RPC-like fashion with meta-data
provided via the PATH of the HTTP Request-line. The
encapsulation of meta-data in th PATH was also cho-
sen in the Hobs protocol, this approach is attractive
when the amount of arguments are few and provides
a simple API when the messages a similar to remote
procedure calls. The prefix could be considered an ob-
ject instance reference, hello and tunnel method names
and everything else “/” separated arguments.

In the following sections the MIFCHO messages are
described and to names MFC-0 and MFC-1 are used
to identify two MIFCHO instances.

4.4.1 Handshake

POST /peer/hello/<peer_id> HTTP/1.1

The handshake as illustrated in figure[Id]is initiated
by the entity establishing the connection to the other

16

party. In the illustration this is MFC-1 connecting to
MFC-0. MFC-1 identifies itself by sending the hello
command containing MFC-1s peer id. The peer id is
not a network address but a unique identification of
MFC-1.

MFC- MFC

socket.connect(mfc-0, peer_port)

POST /peer/hello/<peer_id> HTTP/1.1

Add to list of Peers

CF A A&

HTTP/1.1 200 OK

Wait for
Setup

>
C; Request

\4

Figure 14: MIFCHO handshake.

When MFC-0 receives the hello message it stores a
reference to the underlying socket of the HTTP POST
request, mapped to by the peer_ id and sends a HTTP
200 OK to MFC-1. The underlying socket is called the
control connection of MFC-1. The control connection
is maintained by MFC-1 meaning that if it should be
disconnected it will attempt to reconnect. After MFC-
1 has received the 200 OK response to it’s handshake
method it starts to listen on the control connection for
tunnel setup requests.

MIFCHO then switches direction of HTTP re-
quests, such behavior is specified under the Reverse
HTTP protocol specification.

4.4.2 Tunnel Setup Request and Response

The meta-data for a tunnel setup request consists of
prefiz, fixed message-identifier string “tunnel”, followed
by a tunnel id, endpoint host and endpoint_ port.
The meta-data for tunnel setup response consists of
a prefiz and a fixed message-identifier string “tunnel”.

MEC-0 MFC-1 Endpojnt

Lookup Peer Waiting
Control Connection for Setup
Requests

POST /MifchoMeta HTTP/1.1 ~

A

HTTP/1.1 200 OK

i
)

Waiting
D for Setup
Response

socket.connect()
L - e e)

socket.connect()

QTunneling... p Tunneling...

€ — - — e LRLRRRRREERER =
\4 \4 \4

Figure 15: MIFCHO tunnel setup request and re-
sponse.

As described in the previous section then MFC-
1 listens on its control connection for setup requests.
When MFC-0 needs to tunnel data through MFC-0 it
looks up the control connection of MFC-1 and sends
the setup request, MFC-1 responds immediately indi-
cating not that the status of contacting the endpoint
but the status of whether the MFC-1 will attempt to
contact the endpoint.

MFC-0 then attempts to contact the endpoint spec-
ified in the meta-data, after-wards it establishes a new
socket with MFC-0 and sends a tunnel setup response
on the new socket. When MFC-0 has verified that the
tunnel id provided is valid it responds 200 OK.

MFC-0 and MFC-1 hereafter tunnels all payloads
on these two newly created sockets.

4.5 Using MIFCHO
Deploying jsVNC and MIFCHO can be done by:

cd 7

mkdir deploy

svn export http://mifcho.googlecode.com/svn/
trunk/ mifcho

svn export http://jsvnc.googlecode.com/svn/
trunk/src jsunc

cd mifcho

adjust the configuration file

python bin/mifcho.py —c etc/web gw.conf —1 var
/log /web_wg.log —v ERROR

Figure 16: Starting a MIFCHO instance with config-
uration in web_ gw.cfg, logging to web_gw.log at log-
level ERROR.

17

5 Experiments

The experiments should reveal the difference in re-
source utilization and consumption between using a
traditional VNC client and the browser-based VNC
client jsVNC.

Two experiments were designed to measure the
CPU utilization and memory consumption on the de-
vice running the VNC client and another experiment
to see the effect of the protocol overhead as described
previously. To perform these two experiments tools are
needed to be able to: reproducing a desktop interac-
tion, measure CPU/memory utilization and measure
the amount of bytes transferred.

Two tools (record.py and play.py) were developed
for reproducing the desktop interaction. record.py
does as the suggest perform a recording user-input
events from the X window system such as mouse-
keydown /keyup/move and keyboard keydown/keyup.
record.py is based on an example application from the
Xlib python bindings and enhanced with functionality
to store all events to file with a timestamp such that
events can be replayed.

The replay of events is performed by play.py and in
addition to executing events in a timely manner it also
samples CPU utilization and memory consumption of
a target process.

It was established in the analysis that a VNC client
using only RAW, CopyRect and pseudo-encoding is not
able to playback video in a decent quality without stut-
ter. The desktop interaction record with record.py was
therefore a utilization of a desktop where the interac-
tions comprised of a set of operations common to the
use of a desktop environment. This included moving
the mouse over items to trigger hover-effects, clicking
of pop-up menus, writing text in a text-editor, draw a
simple drawing in a drawing program, maximize and
minimize windows to trigger the transfer of larger rect-
angles than those transferred with the other uses and
lastly drag windows around to provoke the use of the
CopyRect encoding.

A screen-recording of the this interaction is pro-
vided in the appendix section [C] links to an online
version of this video demonstration is also available in
the appendix.

For the first experiment the desktop interaction
was played back with play.py using the following
VNC clients: TightVNCs vncviewer, jsVNC in Google
Chrome using WebSockets, jsVNC in Google Chrome
using Hobs and finally jsVNC in Firefox using Hobs.

For the second experiment the previously described
desktop interaction is played back with play.py but
additionally used Wireshark to record the message-
exchange between the VNC client and MIFCHO.

The VNC server was in both cases running on a
machine with Microsoft Windows XP and the refer-
ence VNC-server implementation VNC Free Edition
4.1 from RealVNC. The desktop was using a resolu-
tion 1280x712 with 32bit colors.

5.1 Results

In figure [T the CPU utilization is plotted as a function
of time, the graph shows a peak for all clients in the
beginning of the desktop interaction this is due to the
server sending the entire frame-buffer to the client re-
quiring the most amount of work during this period of
time. The graph of the browser-based clients stabilizes
around 30% CPU utilization within about 5 seconds.
The graph of the native VNC-client stabilizes around
1% CPU utilization within about one second.

120

Google Chrome - Websocket
100 Google Chrome - Hobs
M Firefox - Hobs

B Vncviewer - RAW

80

Figure 17: CPU utilization in percent of jsVNC and
vneviewer.

The graph quite clearly shows that the browser-
based clients have a significantly higher CPU-
utilization with a peak of 112% where the native VNC-
client never exceeds 6% utilization. It is interesting to
observe that there does not seem to be any clear ad-
vantage in terms of CPU-utilization in using browser-
supported WebSockets.

To uncover what the source of this significantly
higher CPU-utilization is a CPU-profiling was run on
jsSVNC, revealing that 45% of the time was spend
of base64 decoding. This explains both why CPU-
utilization is so much higher than the native VNC
client, since the native client does not need to do any
base64 encoding and it explains why there is not any-
thing to gain with the browser-supported WebSockets
since the dominant operation of base64 decoding is re-
quired for both Hobs and WebSockets.

75

e Google Chrome - Websocket
Google Chrome - Hobs

M Firefox - Hobs

M| Vncviewer - RAW

10.0

5.0

0.0

Figure 18: Memory consumption of jsVNC and
Tight VNCs vncviewer.

The memory consumption of jsVNC in Google
Chrome and Firefox and Tight VNCs vncviewer is plot-
ted as a function of time in figure I8 . The graph
shows that the memory consumption Google-Chrome

18

quickly consumes about 3.5MB which corresponds
somewhat to the size of the frame-buffer = 1280*712*4
/ (1024*1024) ~= 3.47TMB. The graph rises at the end
of interaction which complies with the maximization
and minimization performed which leads to somewhat
larger framebufferUpdates. It is mildly surprising to
see that native vncviewer uses less than a MB of mem-
ory. The graph again clearly shows that the browser-
based VNC client has a significantly higher resource
consumption than the native client.

The amount of bytes transferred in absolute values
and relative values to the native client is provided in
table Bl

| Bytes | Send | Received | Total |
Vncviewer 706312 60903223 | 61609535
jSVNC WS 777814 74756330 | 75534144

jsSVNC WS % 10.1% 22.7% 22.6%
jsVNC Hobs 4109996 | 81286663 | 85396659
jsVNC Hobs % | 481.8% | 33.4% 38.5%

Table 5: Bytes transferred in absolute values and per-
centile increase in relation to the native client.

The graph shows the total amount of bytes trans-
ferred for jsVNC using WebSockets, jsVNC using Hobs
and for TightVNCs native VNC-client. The graph
shows that Hobs has a higher overhead than WebSock-
ets. This is also to be expected since Hobs encapsulates
payloads in HTTP request/response pairs and Web-
Sockets only use a constant four bytes for the begin-
ning/end of message indicators.

The data a client receives with RFB mostly con-
tains large messages where the data a client sends
with RFB is mostly small messages. Since a client
receives frameBuffer Updates and sends frameBufferRe-
quests and pointerEvent /keyFEvents. The table shows
that the overhead is most significant when sending
packages due to the fact that the sending is comprised
of many small messages.

19

6 Conclusion

In this paper a case study of engineering cloud-based
networking applications has been conducted. Cloud
computing provides a means for seamlessly making
computing resources available as a service, on-demand,
everywhere. The work in this paper studies the engi-
neering challenges of making a VNC client available as
a service, on-demand in an Internet-browser.

A VNC client has been engineered and experiments
show promising results that it is feasible to engineer
network applications in the browser which require high
throughput and low latency. Experiments however also
show that the price of cloud-based VNC client is paid
with significantly higher CPU utilization, memory con-
sumption and bandwidth consumption than a tradi-
tional VNC client.

The work in this paper also analyze the challenges
of enabling socket-like communication for the browser
and a middleware platform for aiding connection-
establishment, enabling protocol translation and per-
forming browser-based application deployment has
been implemented.

It was also found that one of the contributors to
significant higher CPU-utilization of the browser-based

20

VNC client is base64 decoding of data. This discovery
stressed the importance for future WebSocket APIs and
protocols to support binary framing to safely and ef-
ficiently transport binary data in browser-based appli-
cations.

6.1 Future Work

Experiment with implementing more encoding-
schemes based on the community maintained RFB
specification. The TIGHT encoding-scheme is based
on JPEG compression this is interesting since Internet-
browsers are well-equipped for rendering JPEG images.
It could be interesting to evaluate the difference in per-
formance of jsVNC with TIGHT encoding vs the RAW
manually handling decoding.

It was observed during the experiments that a large
part of the CPU-utilization was caused by base64 en-
coding and decoding of messages, it could be interest-
ing to find a way to enable Hobs to transfer binary data
in a safe way without requiring the base64 encoding.

Another observation was made that MIFCHO could
be used as an offload proxy for the CPU-intensive tasks
of JPEG encoding frameBuffer Updates.

References

[1] FreeNX. http://freenx.berlios.de/, 2010.

[2] P. S. Bryan Ford and D. Kegel. Peer-to-peer communication across network address translators. In
Proceedings of the annual conference on USENIX Annual Technical Conference, ATEC ’05, pages 13—13,
Berkeley, CA, USA, 2005. USENIX Association.

[3] carde. carde - Pure Web Standards based Remote Desktop. http://code.google.com/p/carde/, 2010.
[4] M. Fucci. FlashLight-VNC. http://www.wizhelp.com/flashlight-vnc/, 2010.

[5] Google. ExplorerCanvas. http://excanvas.sourceforge.net/, 2010.

[6] Google Inc. Google Secure Data Connector. http://code.google.com/securedataconnector/, 2010.

[7] P. S.-A. J. M. Tan Paterson, Dave Smith. XEP-0124: Bidirectional-streams Over Synchronous HTTP
(BOSH). XEP-0124 (Informational), 2009.

[8] jssockets. jssockets. http://code.google.com/p/jssockets/, 2010.
[9] Kaazing. Kaazing Gateway. http://www.kaazing.org/confluence/display/KAAZING /Home, 2010.

[10] Microsoft. Windows Remote Desktop. http://support.microsoft.com /default.aspx?scid=kb;EN-
US;q186607, 2010.

[11] NoMachine. NX. http://www.nomachine.com/products.php, 2010.
[12] Orbited. Orbited. http://orbited.org/, 2010.

[13] A. Russell. Comet Low Latency Data for the Browser. http://alex.dojotoolkit.org/2006/03/comet-low-
latency-data-for-the-browser/, 2010.

[14] TigerVNC. TigerVNC. http://tigervnc.org/, 2010.

[15] TightVNC. TightVNC. http://www.tightvnc.com/, 2010.

[16] TightVNC. TightVNC Java Viewer. http://www.tightvnc.com/ssh-java-vnc-viewer.php, 2010.
[17] R. L. Tristan Richardson. The RFB Protocol. www.realvnc.com/docs/rfbproto.pdf, 2009.

[18] UltraVNC. UltraVNC. http://www.uvnc.com/, 2010.

[19] W3C. The WebSocket API. http://dev.w3.org/html5/websockets/, 2010.

[20] W3C. The WebSocket Protocol Specification - Latest. http://www.whatwg.org/specs/web-socket-
protocol/, 2010.

[21] S. G. Ware. Guacamole. http://sourceforge.net/projects/guacamole/, May 2010.
[22] S. G. Ware. Java Socket Bridge. http://stephengware.com/projects/javasocketbridge/, 2010.
[23] Wikipedia. Cross Site Request Forgery. http://en.wikipedia.org/wiki/Cross-site request forgery, 2010.

[24] Wikipedia. Cross Site Scripting. http://en.wikipedia.org/wiki/Cross-site_scripting, 2010.

21

© W N U A W N e

W oW oW W W W NN NN NNNN N R R R s e s e e
OR W R~ O ® WO AWM RO © 0N A W N = O

w

© 0w N O TR

S I R

A MIFCHO Configuration Example

[Hobs Gateway |

url=http://tile —0—0.local:8000/hobs
instances=15

component=HobsAcceptor

[Websocket Gateway |

url=http://tile —0—0.local :8000/ wsocketl
instances=15
component=WebsocketAcceptor

[Peer Interface]

url=http://tile —0—0.local :8000/peer
instances=15

component=PeerAcceptor

[Management Interface |
url=http://tile —0—0.local :8000/admin
instances=15
component=ManagementAcceptor

[jsVNC App Deploy |

url=http://tile —0—0.local :8000/jsvnc
instances=15
component=StaticWebAcceptor

path prefix=../jsvnc/src

[TCP Forward |

url=tunnel://tile —0—0.local :5900/1localhost /59000

instances=15
component=TCPForwardAcceptor

[TCP Tunnel via Peer|

url=tunnel://tile —0—0.local :8001/128//localhost /59000

instances=15
component=TCPTunAcceptor

Figure 19: Example MIFCHO configuration file.

B Message Samples

B.1 Hobs Session Creation

Session creation request of 443 bytes.

GET /hobs/create /3527051141/50/jsvnc —01/59000 HTTP/1.1

Host: tile —0—0:8000

User—Agent: Mozilla /5.0 (X11; U; Linux x86_64; en—-US; rv:1.9.2.5pre) Gecko/20100528 Ubuntu

/10.04 (lucid) Namoroka/3.6.5pre

Accept: text/html,application /xhtml4xml, application /xml;q=0.9,%/x;¢=0.8

Accept—Language: en—us,en;q=0.5
Accept—Encoding: gzip ,deflate

Accept—Charset: ISO—8859—1,utf—8;q=0.7,%x;9=0.7

Keep—Alive: 115
Connection : keep—alive
Origin: null
Session creation response of 110 bytes.

HTTP/1.1 200 OK
Content—Length: 39
Access—Control—Allow—Origin:

198118126074926987294597228863060066306

B.2 Hobs Sending Message

Sending a pointerEvent and frameBuffer UpdateRequest, total message-length: 595 bytes.

POST /hobs/session /198118126074926987294597228863060066306/3527051188 HTTP/1.1
Host: tile —0—0:8000

22

© W N U

10
11
12
13
14
15
16

w

© W N O oo

10

SN N

[ST NECR CR

o N

User—Agent: Mozilla /5.0 (X11; U; Linux x86_ 64;
/10.04 (lucid) Namoroka/3.6.5pre

Accept: text/html,application /xhtml4xml, application /xml;q=0.9,%/x;¢=0.8

Accept—Language: en—us,en;q=0.5
Accept—FEncoding: gzip ,deflate

Accept—Charset: ISO—8859—1,utf—8;9q=0.7,%;9q=0.7
Keep—Alive: 115

Connection : keep—alive

Content—Type: text/plain; charset=UTF-8
Content—Length: 2/

Origin: null

Pragma: no—cache

Cache—Control: no—cache

BQAAAAAAAWEAAAAABQACYA——

Session usage response of 70bytes:

HTTP/1.1 200 OK
Content—Length: 0
Access—Control—Allow—Origin: x

B.3 Hobs Receiving Message
Request

GET /hobs/session /198118126074926987294597228863060066306 HITP/1.1

Host: tile —0—0:8000
User—Agent: Mozilla /5.0 (X11; U; Linux x86_ 64;
/10.04 (lucid) Namoroka/3.6.5pre

Accept: text/html,application /xhtml4xml, application /xml;q=0.9,%/x;¢=0.8

Accept—Language: en—us,en;q=0.5
Accept—FEncoding: gzip ,deflate

Accept—Charset: ISO—8859—1,utf—8;9q=0.7,%;9=0.7
Keep—Alive: 115

Connection : keep—alive

Origin: null

Response

HTTP/1.1 200 OK
Content—Length: 307200
Content—Type: text/plain
Access—Control—Allow—Origin: =*

<partial —framebufferupdateresponse—base64 —encoded >

B.4 WebSocket Initialization

HTTP compatible setup request.

GET /wsocket /1234/jsvnc —01/59000 HTTP/1.1
Upgrade: WebSocket

Connection: Upgrade

Host: tile —0—0:8000

Origin: null

Response:

HTTP/1.1 101 Web Socket Protocol Handshake
Upgrade: WebSocket

Connection: Upgrade

WebSocket —Origin: null

WebSocket—Location: ws://tile —0—0:8000/wsocket/123//jsvnc—01/59000

WebSocket—Protocol: sample

B.5 WebSocket Send

Sending a pointerEvent and frameBuffer UpdateRequest, total message-length: 26 bytes.

00BQAAAAAAAWAAAAAABQACYA=—FF

en—US; rv:1.9.2.5pre) Gecko/20100528 Ubuntu

en—US; rv:1.9.2.5pre) Gecko/20100528 Ubuntu

23

C Physical Medium

The source-code for jsVNC and MIFCHO are provided on the enclosed physical medium. The content of the
medium is organized as described in table 6

| Path | Description |
/jsvne/* All source code related to the jsVNC browser-based application.
/mifcho/* All source code related to the MIFCHO middleware.

/demo/jsvnc_ chrome.avi | Video demonstration of jsVNC in H.264 encoding.
/demo/jsvnc_ chrome.ogv | Video demonstration of jsVNC in OGV format.
/demo/screenshots/*.png | Screen-shots of jsVNC.

/report.pdf A PDF-version of this document.

Table 6: Organization of physical medium.

C.1 Online

The resources described above are also available online via Googles project-hosting service and the video is
available on Youtube. Links are provided in table [7l

| | URL |
MIFCHO http://code.google.com /p/mifcho /hosted
jsVNC http://code.google.com/p/jsvnc/
Video-Demo | http://www.youtube.com/watch?v=TocE4MzsD-c

Table 7: Online availability of ressources.

24

	Introduction
	Terminology
	Related Work

	Analysis
	VNC Application
	Infrastructural Challenges and Browser Limitations
	Techniques
	Initiate Retrieval
	Server Push

	Technique Implementations
	Bayeux
	BOSH

	Wire Protocols
	WebSockets

	Security Concerns
	Frame-buffer Rendering
	Conclusion

	Architecture & Design
	Implementation
	Hobs
	Session Creation
	Server to Client Messages
	Client to Server Messages

	jsVNC
	MIFCHO
	MIFCHO Protocol
	Handshake
	Tunnel Setup Request and Response

	Using MIFCHO

	Experiments
	Results

	Conclusion
	Future Work

	References
	MIFCHO Configuration Example
	Message Samples
	Hobs Session Creation
	Hobs Sending Message
	Hobs Receiving Message
	WebSocket Initialization
	WebSocket Send

	Physical Medium
	Online

