
jsVNC - A Case Study of Engineering Cloud-Based NetworkAppli
ationsSimon Andreas Frimann LundJune 4, 2010Contents1 Introdu
tion 31.1 Terminology . 41.2 Related Work . 42 Analysis 42.1 VNC Appli
ation . 42.2 Infrastru
tural Challenges and Browser Limitations . 62.3 Te
hniques . 62.3.1 Initiate Retrieval . 72.3.2 Server Push . 72.4 Te
hnique Implementations . 72.4.1 Bayeux . 82.4.2 BOSH . 82.5 Wire Proto
ols . 82.5.1 WebSo
kets . 82.6 Se
urity Con
erns . 92.7 Frame-bu�er Rendering . 92.8 Con
lusion . 93 Ar
hite
ture & Design 104 Implementation 114.1 Hobs . 114.1.1 Session Creation . 114.1.2 Server to Client Messages . 124.1.3 Client to Server Messages . 124.2 jsVNC . 134.3 MIFCHO . 144.4 MIFCHO Proto
ol . 164.4.1 Handshake . 164.4.2 Tunnel Setup Request and Response . 164.5 Using MIFCHO . 175 Experiments 185.1 Results . 186 Con
lusion 206.1 Future Work . 20Referen
es 21A MIFCHO Con�guration Example 22B Message Samples 22B.1 Hobs Session Creation . 22B.2 Hobs Sending Message . 221

B.3 Hobs Re
eiving Message . 23B.4 WebSo
ket Initialization . 23B.5 WebSo
ket Send . 23C Physi
al Medium 24C.1 Online . 24

2

Abstra
tCloud
omputing provides a means forseamlessly making
omputing resour
es avail-able as a servi
e, on-demand, everywhere. Thework in this paper studies the engineering
hal-lenges of making a VNC
lient available as aservi
e, on-demand in an Internet-browser.A VNC
lient has been engineered and mid-dleware has been implemented whi
h en
apsu-lates the infrastru
tural
hallenges of providing
loud-based network appli
ations.Experiments show promising results thatit is possible to engineer network appli
ationsin the browser whi
h require high through-put and low laten
y. Experiments howeveralso show that the pri
e of
loud-based VNC
lient is paid with signi�
antly higher CPU uti-lization, memory
onsumption and bandwidth
onsumption than a traditional VNC
lient.1 Introdu
tionInternet-browsers support the paradigm of
loud
om-puting. In
loud
omputing the goal is to provide
om-puting resour
es as a servi
e, on-demand via the Inter-net. Internet-browsers fa
ilitate the
loud-
omputingparadigm of providing a means for on-demand deliveryof appli
ations via the Internet without requiring anyfurther installation or maintenan
e of software on theusers devi
e.Browser-based appli
ations has multiple advan-tages that makes them more attra
tive than traditionalappli
ations to both appli
ation-users and appli
ation-developers. They
an be a

essed from any devi
eavailable to the user as long as the devi
e has an Inter-net browser. This
an be their laptop, smart phone ora devi
e the user
an borrow su
h as a library PC or afriends
omputing devi
e.A browser-based appli
ation
onsists of HTML,CSS and JavaS
ript. HTML and CSS are used tode
laratively de�ne the graphi
al presentation of theappli
ation and JavaS
ript is used to de�ne the a
tualappli
ation-logi
. Popular browser-based appli
ationsfor appli
ation-domains su
h as mail-
lients (Hotmail,G-Mail), so
ial networking (Fa
ebook, LinkedIn) andmany others exists.Browser-based appli
ations however do not exist forall appli
ation-domains sin
e te
hni
al limitations ofInternet-browsers hinders them. Appli
ations requir-ing e�
ient manipulation of 2D or 3D graphi
s, orlow-level network
ommuni
ation. Su
h appli
ation-domains in
lude games, Computer-Assisted-Designand network-
lients.The Internet-browser was not designed to handlethese appli
ation-domains but sin
e the browser is afa
ilitator for the
loud
omputing paradigm of ap-pli
ations as a servi
e provides a strong in
entive forpushing the boundaries of whi
h appli
ation-domainsthe browser should handle.One approa
h to pushing the boundaries is to ex-pand the
apabilities of the browser by using third-party plug-ins. Su
h plug-in te
hnology in
lude Java

Runtime Environments, Flash, A
tiveX
omponents,Mi
rosoft Silverlight and others. The third-party plug-in must be installed and maintained on the users de-vi
e whi
h is a
ompromise of the
loud
omputingideal of being able to seamlessly provide appli
ationsas a servi
e. Another aspe
t of third-party plug-insare that the plug-ins
an be proprietary and
on�i
twith distribution li
ensing of the many di�erent poten-tial platforms. A se
urity aspe
t of third-party plug-ins are that they provide additional atta
k-ve
tors forremote-
ode exe
ution. Sin
e third-party plug-ins pro-vide additional a

ess to lo
al res sour
es they are alsovulnerable to exposing lo
al res sour
es when exploited.Another approa
h to expanding the
apabilities ofbrowser-based appli
ations are to expand the
apabil-ities o�ered by the browsers themselves and to stret
hand
ombine
urrent
apabilities of the browser in newways to a
hieve the desired fun
tionality. By doingso the design goal of being able to seamlessly provideappli
ations as a servi
e
an be maintained.The work in this report fo
uses on using the lat-ter approa
h in an e�ort to engineer a browser-basedVNC-
lient, named jsVNC (JavaS
ript VNC). A VNC
lient is not well-suited to be run in an Internet-browsersin
e it requires an e�
ient way to render a frame-bu�er on the
lients devi
e and it needs to
ommu-ni
ate with a VNC server over TCP. An analysis isprovided in se
tion 2 on how
urrent Internet-browser
apabilities and
urrent work-in-progress on expand-ing Internet-browser
apabilities
an be
ombined toobtain the fun
tionality needed for the engineering ofjsVNC.Engineering the browser-based appli
ation is how-ever not the only
hallenge in engineering a
loud-basednetwork appli
ation. The browser is only a fa
ilitatorfor providing the
lient-side appli
ation as a servi
e tothe user. For a network
lient to be usable it must beable to
onta
t the
orresponding server, establishingend to end
onne
tions on the Internet is non-trivial.The Internet
onsists of many hosts dire
tly
onne
tedto the Internet with a publi
 IP-address establishing
onne
tions to su
h hosts are trivial, the problem per-sists in the many hosts on private networks
onne
t tothe Internet but not a

essible from the Internet due to�rewall restri
tions and network address translators.Existing tools and appli
ations suites exist that
anbe
on�gured and
ombined to solve su
h issues butdoing so
an be
omplex. The work in this paper do
-uments a MIddleware For Conne
tion Handling andOr
hestration (MIFCHO) uni�es the
onne
tivity andproto
ol translation issues for
loud-based networkingappli
ations in a simple solution.The rest of the report is stru
tured as follows. Se
-tion 1.1 des
ribes the terminology used in this report.Se
tion 1.2 des
ribes the essential di�eren
es betweenjsVNC/MIFCHO and similar VNC-
lients and middle-ware solutions. As previously mentioned then se
tion2 analyzes the possibilities and
hallenges with
urrentte
hnology. Se
tion 3 des
ribes the ar
hite
ture anddesign of jsVNC and MIFCHO. Se
tion 4 des
ribes theimplementation of jsVNC and MIFCHO. In se
tion 53

the performan
e of jsVNC is evaluated and
omparedto a traditional VNC-
lient, the se
tion also dis
uss theresults of the experiments. Lastly a
on
lusion on thework in this report is provided in se
tion 6.1.1 TerminologyWhen referring to browser, Internet-browsers su
h asInternet Explorer, Firefox, Google Chrome, Opera isthe programs referred to.When mentioning modern browsers, these are ref-eren
es to browsers that support the HTML5
anvastag.1.2 Related WorkThe work do
umented in this report
an be separatedinto three major problem areas. The �rst is the a
-tual implementation of the VNC-
lient in JavaS
ript.Se
ond is the
lient-side libraries and proto
ol imple-mented to emulate bidire
tional
ommuni
ation andthird is the implementation of the middleware that sup-ports the
lient-side
ode.jsVNC is fo
used on not having any third-partyrequirements and to fun
tion in a stri
t browser en-vironment. Other approa
hes implement the entireVNC-
lient as a third party
omponent, su
h ap-proa
hes in
lude: TightVNC Java-Viewer[16℄(Java)and FlashLight-VNC[4℄(Flash). Another approa
h isto write the VNC
lient in JavaS
ript but rely on third-party
omponents via a bridging te
hnique to enableso
ket
ommuni
ation in JavaS
ript. Bridging te
h-niques in
lude [8℄(Flash) or [22℄(Java).jsVNC is more
losely related to the two proje
tsCARDE[3℄ and Gua
amole [21℄. Both of these proje
tsare like jsVNC implemented entirely in JavaS
riptwithout relying on any third-party plug-ins.CARDE however relies on the work-in-progressof browser-based WebSo
kets[19℄. jsVNC also utilizeWebSo
kets when available but also implement an em-ulation of WebSo
kets named Hobs whi
h is used asa fail-over in
ase the browser does not support Web-So
kets.jsVNC, CARDE and Gua
amole all di�erentiatein how they en
apsulate proto
ol messages of theRFB proto
ol. CARDE uses a JSON-RFB en
apsu-lation, Gua
amole uses an XML-RFB en
apsulationand jsVNC does not use any en
apsulation. jsVNCdoes not use any en
apsulation sin
e whi
h minimizesmessage en
oding and de
oding overhead.To support abstra
t
ommuni
ation in the jsVNCimplementation a
ommuni
ation library named HOBShas been implemented. It implements a
ommuni
a-tion proto
ol similar in te
hnique to BOSH[7℄. TheMIFCHO middleware that translates HOBS and Web-So
kets and aids
lient-server
onne
tivity is related infun
tionality to Kaazing Gateway[9℄ and Orbited[12℄.It however also has an additional feature to support a
-
ess to �rewalled resour
es similarly to Google SDC[6℄.MIFCHO uni�es solutions to the di�erent
onne
tiv-ity
hallenges of browser-based appli
ations in a
loud

ontext.2 AnalysisThe starting point for the analysis is to determine the
apabilities required for a VNC
lient. To un
overthis an in-depth analysis of the VNC appli
ation isprovided in se
tion 2.1. In the su

eeding subse
tionthe infrastru
tural
hallenges of
loud-based networkappli
ations are analyzed and the limitations of theInternet-browser are des
ribed.Di�erent te
hniques to over
oming limitations andimplementations thereof are des
ribed in subse
tions2.3 and 2.4.At the end of this se
tion the di�erent
hallenges are
on
luded upon and a re
ommandation for a solution-model is provided whi
h is used for the basis of thear
hite
ture, design and implementation.2.1 VNC Appli
ationVirtual Network Computing (VNC) is an appli
ationthat provides the display of and intera
tion with, aremote
omputer over a network. It does so by us-ing
lient-server based
ommuni
ation where the serversends display-output to the
lient and the
lient sendsmouse and keyboard input to the server.Histori
ally VNC was invented at Olivetti Re-sear
h Labs and was based on the Remote Frame-Bu�er (RFB[17℄) proto
ol,
urrently VNC and RFBare o�
ially maintained by a
ompany named Re-alVNC. Many VNC/RFB implementations has beenengineered by others than the original
reators and
ur-rent maintainers. Both proprietary and open-sour
eimplementations exist with non-standardized exten-sions to the original proto
ol. O�ering more featuressu
h as �le-transfer[15℄[18℄. Even the o�
ial maintain-ers of the RFB proto
ol provide proprietary VNC im-plementations.A VNC implementation named TigerVNC[14℄ hasa high fo
us on improving the performan
e of VNCand also provide a
ommunity maintained RFB spe
-i�
ation as an alternative to the o�
ial spe
i�
ation.The
ontribution of the
ommunity maintained spe
i�-
ation is that it attempts to do
ument and unify third-party proto
ol extensions. Alternatives to VNC/RFBare among others Noma
hineNX[11℄/FreeNX[1℄ andRemote Desktop (RDP[10℄).Engineering all fun
tionality of the
ommunitymaintained RFB spe
i�
ation is however out of s
opefor this proje
t. Sin
e fo
us of this proje
t is on the
hallenges of engineering browser-based network appli-
ations and not with
hallenges of optimizing the VNCappli
ation features and performan
e. It is howeverworth noting for future work that a do
umentation formany proto
ol extensions exists su
h that it
an beused in the further development of jsVNC.The most essential messages (illustrated in �gure 1)are frameBu�erUpdateRequest, keyEvent, pointerEventsend from the
lient and frameBu�erUpdate send from4

the server. The essential idea of VNC/RFB is to sendthe display of the server to the
lient in the form ofa frameBu�erUpdate where the data representing thedisplay is en
oded with one of the en
odings supportedby both the VNC
lient and server. During a hand-shake phase the server sends a set of supported en-
odings to the
lient and the
lient
an
hoose to senda subset of the en
odings to the server to inform theserver of whi
h en
odings the
lient supports. Theserver is not allowed to send updates with an en
odingthat the
lient has not expli
itly informed the serverthat he supports. The RAW en
oding however mustbe supported by a valid VNC
lient and server, theother en
odings are optional.FrameBu�erUpdates with RAW en
oding sendsdisplay data as a BGRA-bitmap su
h a representationrequires high throughput
apabilities of the underlyingnetwork.

Figure 1: Essential messages of VNC/RFB.
In table 1 an overview of the sizes of framebu�erUp-dates is given in megabytes and in table 2 and overviewof the theoreti
al maximum amount of frameBu�erUp-dates per se
ond is provided. The updates are updatesof the entire display where the display has a resolutionas des
ribed in the head of the table and a
olor-depthof 4byte per pixel. The tables gives an indi
ation as towhat
ould be theoreti
ally possible or impossible usesof a VNC-
lient with RAW en
oding.If the VNC-
lient a

esses a VNC-server play-ing a video then this would require a frame-rate ofabout 25fps for stutter-free playba
k. Playba
k ofHIGH-de�nition video is thus theoreti
ally impossi-ble. Low-resolution video might be possible when high-throughput inter
onne
ts are available.

480x320 800x480 1024x768 1920x1200MB 0.585 1.831 3 8.789Table 1: Size of a single frame-bu�er update with RAWen
oding.Mb/S 480x320 800x480 1024x768 1920x12001 0.21 0.09 0.04 0.0110 2.13 0.85 0.42 0.14100 21.33 8.53 4.17 1.421000 218.45 87.38 42.67 14.56Table 2: Theoreti
al maximum amount of frame-bu�erupdates per se
ond with RAW en
oding.Due to these high throughput requirements of RAWen
oding it might seem that VNC with RAW en
od-ing is useless on the Internet where inter
onne
ts
anbe as slow 1-2Mbit. The general use of desktop doeshowever have mu
h lower requirements to the rate ofupdates and
an even for many updates settle with onlyupdating small parts of the frame-bu�er or re-use ex-isting parts of the frame-bu�er that the
lient alreadyhave. The RFB proto
ol therefore support in
rementalframe-bu�er updates whi
h only send a sub-re
tangleof the display to the
lient and by using the CopyRe
ten
oding the server
an instru
t the
lient to
opy are
tangle of the frame-bu�er to di�erent
oordinates.Su
h uses makes VNC viable on low-throughput in-ter
onne
ts for uses su
h as text-editing, mail-reading,�le-browser and other
ommon tasks.Another aspe
t of the proto
ol design is that it isasyn
hronous in message delivery. This might seem
ounter-intuitive by the frameBu�erUpdateRequestand
orresponding response in form of a frameBu�er-Update. And it e�e
tively means that a
lient send-ing a frameBu�erUpdateRequest should not expe
t aframeBu�erUpdate to arrive on the wire immediatelyafter. The sending of framebu�erUpdates is regulatedby the server and the server
hooses when to send theframeBu�erUpdate message. Additionally the amountof framebu�erUpdates send by the server is less thanor equal to the amount of frameBu�erUpdateRequests.This proto
ol property is however quite essential forthe implementation of a VNC
lient, the
lient mustde
ide upon a s
heme for requesting updates and takeinto
onsideration the throughput requirements whende
iding upon a polling s
heme for the frameBu�erUp-dateRequests. The engineering of jsVNC is fo
used onimplementing the most essential messaging of the RFBproto
ol to summarize this involves an appli
ation
a-pable of performing the following:De
ode the re
tangle-en
odings of the frameBu�er-Update messages.Render the de
oded re
tangles on the lo
al displayand
opy an area of the frame-bu�er to di�erent
oordinates.Grab lo
al mouse input and transform them intopointerEvent messages.5

Grab lo
al keyboard and transform keystrokes tokeyEvent messages.FrameBu�erS
heme Implement a sensible s
hemefor sending frameBu�erUpdateRequests.How jsVNC handles the above tasks are des
ribed inse
tion 4.2. In the following se
tions the
apabilitiesof Internet-browsers to enable the ex
hange of RFBproto
ol messages are dis
ussed.2.2 Infrastru
tural Challenges andBrowser LimitationsAs des
ribed in the previous se
tion then VNC/RFB isa network based appli
ation and the RFB proto
ol setsup some requirements to the throughput
apabilities ofthe inter
onne
ts. In addition to the requirements in-du
ed by the VNC appli
ation itself then three essen-tial
hallenges for engineering a
loud-based networkappli
ation are:Deployment In the ideal of
loud
omputing thenjsVNC should be provided as a servi
e on-demand, this poses some infrastru
tural
hal-lenges whi
h are dependent on the ar
hite
tural
hoi
es whi
h is des
ribed in further detail in se
-tion 3 and se
tion 4.Conne
tion-Establishment Cloud
omputing isbased on
ommuni
ation over the Internet, theInternet provides a wide range of hosts identi�edby publi
 IP-addresses whi
h a
lient
an
onne
tto dire
tly. The Internet however also fa
ilitate
onne
tivity with other networks where the hostsin the network do not have publi
 IP-addressesbut are
onne
ted to the Internet via a gatewayand are therefore not dire
tly available from theInternet. jsVNC should able to
onne
t to anyhost on the Internet and any host on a di�erentnetwork whi
h is somehow
onne
ted to the In-ternet. How
onne
tion-establishment is solvedis des
ribed in further detail in se
tion 3 and se
-tion 4.Browser-Limitations The last essential
hallenge isthat a VNC/RFB
lient needs a reliable trans-port proto
ol su
h as TCP to ex
hange messageswith the VNC server. Internet-browsers howeverdo not provide a

ess to low-level
ommuni
a-tion primitives su
h as so
kets via JavaS
ript.The remainder of this se
tion addresses thisproblem and des
ribes the
ommuni
ation prim-itives available in JavaS
ript and di�erent te
h-niques and implementations of te
hniques whi
h
an potentially be used to emulate so
kets inJavaS
ript.Browser does not provide low-level a

ess to a so
ketAPI but they do provide di�erent means for net-work
ommuni
ation based on the HTTP proto
olvia JavaS
ript. Sin
e RFB and HTTP are bothappli
ation-level proto
ols an initial idea is to �nd out

if the two proto
ols have enough similar
hara
teris-ti
s su
h that HTTP
ould be used to dire
tly emulateRFB by parsing the semanti
 meaning of HTTP mes-sages di�erently. An example of this idea is to emulatean RFB pointerEvent message in HTTP as illustratedin �gure 2.HTTP is a stateless proto
ol and the RFB proto-
ol spe
i�
ation des
ribes RFB as being stateless. Thestate referred to in the RFB spe
i�
ation is the stateof the display on the remote s
reen, not of the proto-
ol. The proto
ol itself is stateful and several messagesare send between
lient and server in the handshakeand initialization phase prior to sending frame-bu�eroutput.1 POST /pointerEvent HTTP/1 .12 . . .3 http−headers4 . . .56 button−mask : 000000007 x : 1238 y : 321Figure 2: Dire
t emulation of a RFB pointerEvent withHTTP.Another more pressing in
ompatibility is that theHTTP proto
ol is based on a syn
hronous request/re-sponse messages. The
lient sends a HTTP Request tothe server and the server then sends a HTTP Responseba
k to the
lient. The HTTP Server is only
apable ofsending data to the
lient in the response to HTTP Re-quest, HTTP is in this sense one-way
ommuni
ation.This poses a
on�i
t with RFB proto
ol whi
h is asyn-
hronous and it must be able to re
eive messages fromthe server when data is available su
h as framebu�er-Updates and serverCutText messages, RFB requiresbidire
tional asyn
hronous
ommuni
ation. It there-fore does not seem feasible to dire
tly emulate RFB byapplying a di�erent semanti
 meaning to HTTP mes-sages. Another approa
h to establishing bidire
tional
ommuni
ation must thus be found.In the following se
tions two di�erent approa
hes toobtaining bidire
tional
ommuni
ation are des
ribed.One approa
h is based on using di�erent te
hniquesto emulate asyn
hronous bidire
tional
ommuni
ationbased on syn
hronous HTTP. The other approa
h isbased on
urrent work in progress of standardizinga browser-supported
ommuni
ation proto
ol enablingbidire
tional
ommuni
ation.2.3 Te
hniquesAs previously des
ribed then the
urrently availablemethods of
ommuni
ation is based on the syn
hronousHTTP request/response messages. When a page isloaded in the browser it is retrieved by a HTTP re-quest and all resour
es in the retrieved do
ument isretrieved by further HTTP requests.To improve the loading time of a page browsers usea
ombination of HTTP-pipe-lining and utilizing mul-6

tiple underlying TCP
onne
tions. With HTTP-pipe-ling a
lient sends multiple HTTP requests before wait-ing for the
orresponding responses. The advantage ofHTTP-pipe lining is that the server
an pro
ess mul-tiple requests
on
urrently it must however still returnHTTP responses in the same order as the
orrespond-ing requests were re
eived. The browser
an use mul-tiple underlying TCP
onne
tions to partition the setof the HTTP requests, the amount of underlying TCP
onne
tions is implementation spe
i�
 but has histori-
ally been limited to two
onne
tions per domain, morere
ently this limit has been in
reased to six underlyingTCP
onne
tions.The problem is that on
e the browser has retrievedthe
urrent do
ument and resour
es referred to withinthe do
ument then the server will not send anymoredata to the
lient.The te
hniques for initiating retrieving data afterthe page is �nished loading are two-part they use somemethod to provoke a HTTP request and they utilizefeatures of the HTTP proto
ol to avoid polling for databut instead let the server push data to the
lient whendata be
omes available.2.3.1 Initiate RetrievalThe te
hniques for retrieving data from the serverevolve around using JavaS
ript to dynami
ally add ele-ments to the
urrent do
ument by expanding the Do
-ument Obje
t Model (DOM). The element added mustas a side-e�e
t require the retrieval of a resour
e. This
an be a

omplished by adding an IFRAME to theDOM whi
h will result in a HTTP GET request tothe URL in the IFRAME's SRC tag. The retrieveddo
ument will then
ontain a pie
e of JavaS
ript
odethat will be exe
uted upon retrieval. It is a bit moreinvolved to send data to the server using this methodbut it
an be a

omplished by expanding the DOMwith a IFRAME
ontaining a FORM element, popu-late the FORM with the data that one wants to sendand submitting the form.Another approa
h is to use the XML HTTP Re-quests (XHR), XHR support asyn
hronous exe
utionof HTTP request by providing a simple interfa
e for
onstru
ting requests, sending them and binding event-listeners for responses.2.3.2 Server PushWhen a te
hnique for performing HTTP-requests is
hosen a te
hnique for enabling the server to push datato the
lient instead of for
ing the
lient to poll for datamust be de
ided upon. Two di�erent te
hniques re-ferred to as Hanging Get / Long Polling and the otherHTTP Streaming
an be used.Long Polling involves
reating a loop of HTTP re-quests and letting the server wait with sending it's re-sponse until it has data ready. This is essentially still apolling method but with a poll
y
le that mat
hes withdata being available. The
lear advantage is that nounne
essary requests are invoked. There is however a

pra
ti
al limitation as to how long the poll
y
le
an beallowed to wait. Sin
e the normal behavior of a HTTPrequest/response is that the server will start sendingthe response as soon as it has re
eived the
lient re-quest, when intermediaries su
h as HTTP proxies seesa HTTP response not sending any data they
an
hooseto
lose the
onne
tion based on a timeout parameter.When using the long poll method it is thus a good pra
-ti
e to negotiate a
y
le timeout value whi
h is lowerthan the most
ommon HTTP proxies. By doing sothe Long Poll will simply send an empty response andthe
y
le will exe
ute another Long Poll.The HTTP Streaming approa
h utilizes HTTPChunked en
oding. A Regular HTTP response sendsdata to the
lient by adding a
ontent-length headerdes
ribing the length of response-body. With Chunkeden
oding the
ontent-length header is skipped and theresponse body is send in
hunks. Where ea
h
hunk ispre�xed with a textual length indi
ator. The intentionof
hunked en
oding is to support sending responseswhere the total size of the response is unknown, butit is intended to send �nite length responses. There-fore the
hunked-en
oding has a way to indi
ate that
urrent
hunk is the �nal
hunk. It is therefore not atrue data stream of in�nite length as the name HTTPStreaming indi
ates but it
an be emulated to behaveas an in�nite stream by never sending the �nal
hunk.There are many advantages to the HTTP Stream-ing vs Long Polling, it
an be used for both GET andPOST requests, whi
h means that it
an be used toemulate a stream from both server to
lient and alsofrom
lient to server. There is also a mu
h smaller over-head for ea
h message send with
hunked en
oding, theonly overhead is the
hunk-size indi
ator where LongPolling has to ship the entire HTTP request-line andheaders for ea
h payload.HTTP Streaming however has a big disadvantagethat intermediaries su
h as proxies are likely to alterlengths of
hunks and bu�er
hunks until they see the�nal
hunk indi
ation or until an output bu�er is �lled.Even when no proxies interfere with
hunked en
od-ing then browsers
an behave in the same manner,su
h that instead of pushing small amounts of bytesto the browser for rendering. Instead they wait un-til there a bu�er-threshold is ex
eeded. Su
h behav-ior is
riti
al for many networking appli
ations thatsend many small messages during handshaking/initial-ization phases su
h as the RFB proto
ol.2.4 Te
hnique ImplementationsAn umbrella term
omet has been proposed by softwareengineer Alex Russel[13℄ for identifying the previouslydes
ribed te
hniques. Multiple di�erent implementa-tions of the
omet-te
hniques exists with varying de-gree of generality and appli
ability. Two approa
hesstand out: Bayeux and BOSH[7℄.Bayeux is proto
ol spe
i�
ation for
omet-based
ommuni
ation with a wide variety of supported im-plementations. BOSH is a standardization of bidire
-tional
ommuni
ation using syn
hronous HTTP, it has7

been developed by XMPP primarily for use with their
hat program Jabber sin
e they needed a way to
reatebrowser-based
lients and also to have a way to tunneltheir other proto
ols over HTTP for �rewall traversal.2.4.1 BayeuxBayeux o�ers a higher-level
ommuni
ation proto-
ol related to the publish / subs
ribe
ommuni
ationparadigm. It provides a means for web-appli
ation de-velopers to implement appli
ations using the semanti
sof publishing and subs
ribing events and abstra
ts allthe lower-level issues of the
omet te
hniques.A message in Bayeux is spe
i�ed in JSON and has aset of reserved �elds (
hannel,
lientId, id, data, advi
e,ext, su

essful, error) of whi
h only the �eld
hannelis mandatory. An example of the spe
i�
ation of aBayeux message is provided in �gure x.1 {2
hannel : "/a/
hannel " ,3 data : "Message payload /Arb i t ra ry Obje
t "4 } Figure 3: Example of Bayeux Message.The
hannel �eld de�nes a
ommuni
ation-
hannel between
lient and server, spe
ial meta-
hannels exists for performing proto
ol hand-shake(/meta/handshake), event subs
ription/unsub-s
ription (/meta/subs
ribe|unsubs
ribe).Bayeux is very well-suited for implementing newappli
ations in browser
ompatible with the publish /subs
ribe paradigm. Bayeux is maturing and is sup-ported by Java servers su
h as Jetty.2.4.2 BOSHWhere Bayeux de�nes a higher-level publish/subs
ribeproto
ol BOSH attempts to stay low-level and insteademulate the semanti
s of a regular long-lived TCP-
onne
tion based on an e�
ient use of multiple syn-
hronous HTTP request/response pairs without the re-lying on
hunked responses.Where the Bayeux proto
ol supports many di�erentComet-based transports BOSH fo
uses only on LongPolling and using spe
i�
 utilization of Long Pollingdes
ribed as the BOSH Te
hnique.Messages in BOSH are not wrapped in JSON aswith Bayeux but wrapped in HTML <body /> ele-ments where the attributes of the element are message�elds. An example from the BOSH proto
ol spe
i�
a-tion is provided in �gure 4.BOSH has some very strong requirementswhi
h make it usable in environments su
h asmobile/browser-based
lients,
ompatibility with prox-ies that bu�er partial responses, ba
kwards
ompati-bility with HTTP/1.0, usable in environments wherea

ess to HTTP-headers is denied and many others.

1 POST /web
 l i ent2 HTTP/1 .13 Host : http
m . jabber . org4 A

ept−En
oding : gzip , d e f l a t e5 Content−Type : t ext /xml ;
ha r s e t=utf−86 Content−Length : 10478 <body
ontent=' text /xml ;
ha r s e t=utf−8 '9 hold=' 1 '10 r i d=' 1573741820 '11 to=' jabber . org '12 route='xmpp: jabber . org :9999 '13 ver=' 1 .6 '14 wait=' 60 '15 a
k=' 1 '16 xml : lang=' en '17 xmlns=' http :// jabber . org / p r o t o
o l / httpbind '/>Figure 4: Example of a BOSH message.2.5 Wire Proto
olsThe previously mentioned te
hniques and implementa-tions thereof have
ome into existen
e due the the fa
tthat browser are not
apable of performing
ommu-ni
ation in the way that web-developers need modernweb-appli
ations to
ommuni
ate. The above are oneapproa
h to solving the problem of missing
ommu-ni
ation another approa
h is to expand the browsers
apabilities.2.5.1 WebSo
ketsThe proto
ol is a simple text-oriented frame-based pro-to
ol,
onne
tion setup is initially done by the
lientsending an initial handshake message
ompatible withHTTP. WebSo
kets are not like raw TCP based so
k-ets, TCP based so
kets supports streaming where Web-So
kets are frame-based. Ea
h frame/message send ona WebSo
ket has an initial frame-type header followedby the payload and depending on the frame-type alsoa end-of-message
hara
ter.The frames in the WebSo
ket-proto
ol
losely re-sembles the type of
ommuni
ation made available byusing
hunked-en
oding on HTTP requests. WebSo
k-ets however has two
lear advantages to the ChunkedEn
oding te
hnique, they are truly full-duplex requir-ing only one so
ket for sending and re
eiving. AlsoWebSo
kets are a standards initiative designed for thepurpose of bidire
tional
ommuni
ation in the browser,this means that pra
ti
al impli
ations su
h as proxiesshould not
hoke the
ommuni
ation
hannel be
auseof misinterpretation of the data ex
hanged.The proto
ol is work-in-progress and
onstantly
hanging the latest version is available from [20℄.WebSo
kets are work-in-progress but somebrowsers have however has implemented di�erent ver-sions of the proto
ol draft. Firefox 3.7, Chromium,Google Chrome has experimental WebSo
ket supportof what seems to be based on draft-spe
i�
ation 75.8

2.6 Se
urity Con
ernsTraditional desktop appli
ations are vulnerable to in-
orre
t memory-management whi
h
an be exploitedas atta
k-ve
tors for manipulating the behavior of theappli
ation,
rashing it or making it exe
ute
ode re-siding in other parts of system memory.Browser-based appli
ations are not
on
erned withperforming a

urate memory-management sin
e this ishandled by the browser. Browser-based appli
ationsare however vulnerable to mu
h simpler methods ofmanipulating appli
ation behavior. One su
h atta
kmethod is
alled Cross-Site-S
ripting (XSS[24℄), it ex-ploits appli
ations whi
h does not �lter user-input butinstead dire
tly sends user-input to the browser forrendering. This
an be used to inje
t HTML, CSS,JavaS
ript or Flash into the appli
ation whi
h will thenbe exe
uted when rendered by the browser.Imagine a so
ial networking site whi
h did not per-form proper user-input
he
king, a mali
ious user
ouldinje
t JavaS
ript
ode into their pro�le page. Everyvisitor wat
hing the pro�le page would then exe
utethe JavaS
ript
ode inje
ted by the mali
ious user,whi
h would enable the s
ript to exe
ute a
tions in the
ontext of the vi
tim, sending messages to everybodyin their so
ial network with messages su
h as �you areso foo, bar� or other messages that the vi
tim probablydid not intend on sending.Another
ommon threat for browser-based appli
a-tions are Cross-Site-Request-Forgery (CSRF[23℄), it isbased on a hostile web-page
reating fake requests fora target website. Continuing with the example of theso
ial networking site. A CSRF
an be
omposed byproviding image on a hostile site performing a forgedrequest on the so
ial-networking site.1 <img s r
=' http :// s o
 i a l−networking /updateStatus ? s t a tu s=iAmSoFooBarToday ' />To prote
t against su
h atta
ks browsers implementSame-Origin a

ess poli
ies.2.7 Frame-bu�er RenderingWhen the
omplex issues of enabling browser-basedbidire
tional
ommuni
ation has been solved anequally important problem must be handled: how toe�
iently render re
tangles of frameBu�erUpdates inthe browser?Browsers are
apable of e�
iently rendering imagesin form of tags and browsers support de
od-ing images of di�erent �le formats su
h as: PNG, GIF,JPEG and some variations of 16bit bitmaps. The 32bitBGRA representation of the RAW en
oding using true-
olor is however not supported. One approa
h wouldbe to do real time
onversion of the RAW en
odedre
tangle format su
h as JPEG or PNG. Doing so inJavaS
ript would probably be too demanding. Anotherapproa
h would be to let the middleware perform real-time en
oding of re
tangles, su
h a solution has someinteresting perspe
tives.The middleware
ould be applied in other s
enarioswhere a native VNC-
lient supports more advan
ed en-

odings su
h as the TightVNC en
oding whi
h is basedon JPEG
ompression. The TightVNC en
odings-s
heme provides a trade-o� between CPU utilizationand throughput requirements. By signi�
antly lower-ing the throughput requirements but also requiring amu
h higher CPU-utilization on the VNC server. Byproviding en
oding in the middleware the VNC server
ould use the simple RAW en
oding and o�oad theexpensive JPEG
ompression to the middleware.Su
h a solution based on tags wouldhowever handle in
remental frameBu�erUpdates andCopyRe
t en
odings poorly sin
e there is no means for
opying a subre
tangle of the image
ontained withinthe tag.Another approa
h would be to use the <CANVAS>tag whi
h is made available in HTML5, the
anvas sup-ports e�
ient operations on su
h as putImageData andgetImageData to
opy sub-re
tangles and do partialupdates of the frame bu�er.2.8 Con
lusionA
ombined summary of the
hallenges are providedas a list of re
ommendations for the Ar
hite
ture, De-sign and Implementation of the
loud-based networkappli
ation jsVNC.Choosing a method for obtaining bidire
tional
om-muni
ation is quite essential, WebSo
kets are promis-ing they provide a low-overhead and fully bidire
tional
ommuni
ation primitive with a
lean API. They arehowever work-in-progress and not very widely supportso it would be re
ommended to
reate a minimalisti

ommuni
ation library in JavaS
ript whi
h provide afail-over when WebSo
kets are not available. This fail-over library
ould take advantage of the BOSH spe
i-�
ation. BOSH is quite attra
tive sin
e it is designedto work in a very stri
t browser-environment and
ouldthus provide for a robust alternative to WebSo
kets.The approa
h of letting middleware handle real-time en
oding of frameBu�erUpdate re
tangles hassome interesting perspe
tives but la
k support of
opy-ing sub-re
tangles. The idea of o�-loading middleware
ould provide potential food for though for future work.The
anvas element seems like a better re
ommenda-tion for this proje
t and if the browser does not nativelysupport it the ExCanvas[5℄ proje
t
ould be used a fail-ba
k.Want to use Canvas, sin
e we rely on
anvas,browsers whi
h are new enough to support
anvas willalso support XHR. However support for WebSo
ketsis still very limited sin
e it is
onstantly
hanged so afallba
k
ommuni
ation proto
ol when WebSo
kets arenot available.
9

3 Ar
hite
ture & DesignThe ar
hite
tural
onsiderations and design-
hoi
es are
on
erned with
lient-server
onne
tion establishmentand enabling browser-based bidire
tional
ommuni
a-tion.The
hallenges in
lient-server
onne
tion estab-lishment are that network address translators (NAT)hinders a
lient from dire
tly establishing a
onne
-tion to a server behind a NAT-enabled devi
e, sin
eNAT only translates outgoing
onne
tions. The sim-plest solution is to let the NAT-devi
e forward all traf-�
 on a spe
i�
 port to the server. Su
h an approa
his however quite
umbersome sin
e it requires a

essto a devi
e whi
h is likely to be out of administra-tive s
ope. Another solution is to use hole-pun
hing,a te
hnique used by UDP-based peer-to-peer appli
a-tions su
h as VOIP, real-time-games and others. Hole-pun
hing te
hniques however rely on implementationspe
i�
 properties of NAT-devi
es whi
h make themslightly unstable. Work[2℄ has been made to adapthole-pun
hing te
hniques to TCP, their results showthat only 64% per
ent of the tested Nat-devi
es sup-port the TCP-hole-pun
hing te
hniques.Sin
e browsers are not able to establish raw so
k-ets but rely on WebSo
kets or Comet-based to enablebidire
tional
ommuni
ation. Thus a means for per-forming proto
ol-translation from WebSo
kets/Comet-based
ommuni
ation to raw so
kets must be provided.This
ould ar
hite
turally be pla
ed as the responsibil-ity of the VNC server, by expanding the implementa-tion of the VNC server to be able to run RFB on topof WebSo
kets/Comet-based
ommuni
ation. The ad-vantage to this is that jsVNC
ould
onne
t dire
tlythe VNC server without requiring an intermediary totranslate proto
ols. Two ar
hite
turally di�erent solu-tion models
ould be applied in aiding jsVNC:De
entralized use hole-pun
hing-te
hniques as de-s
ribed in [2℄ for establishing
lient-server
om-muni
ation and implementing proto
ol transla-tion in the VNC server.Centralized use a middleware platform for proto
ol-translation and aiding
lient-server
ommuni
a-tion.The labeling of a
entralized vs de
entralized ar
hi-te
ture is referring to a
entralization of the
on
ernsvs de
entralization of the
on
erns. There is nothingthat prevents the middleware platform from being im-plemented in a distributed fashion. The main
riteriathat marks the ar
hite
ture as
entralized is that allthe
on
erns are
entralized in the middleware and notde
entralized to be handled by the VNC
lient andserver.The work in this proje
t is based on a
entralizedmiddleware ar
hite
ture whi
h primary purpose is toperform proto
ol translation as illustrated in �gure 5and to aid
onne
tion establishment as illustrated in�gure 6.

Figure 5: MIFCHO primary purpose: proto
ol trans-lation.

Figure 6: MIFCHO se
ondary purpose: aiding
lient-server
onne
tion establishment.

10

4 ImplementationThe implementation of jsVNC is multi-part, imple-menting the a
tual VNC appli
ation is only a smallpart of the total required engineering e�ort. The
om-bined engineering e�ort
onsists of:Web-Appli
ation The a
tual jsVNC browser-basedappli
ation
onsisting of HTML, CSS andJavaS
ript that forms the graphi
al user-interfa
eand implementation of the RFB proto
ol. Theimplementation is des
ribed in se
tion 4.2.Bidire
tional-
ommuni
ation library and proto
olmust be implemented sin
e WebSo
kets at thetime of writing are labeled as work-in-progressand therefore have very limited browser-support.Therefore a fail-ba
k for providing bidire
tional-
ommuni
ation must be implemented in form ofa proto
ol de�nition and a JavaS
ript library tosupport it. The JavaS
ript
ommuni
ation li-brary and proto
ol is named Hobs its implemen-tation is des
ribed in se
tion 4.1.Middleware must be implemented to support the ar-
hite
ture des
ribed in se
tion 3. The implemen-tation responsible for these things is named MIF-CHO (MIddleware For Conne
tion Handlingand Or
hestration) and its implementation is de-s
ribed in se
tion 4.3.4.1 HobsHobs provides a fail-ba
k for bidire
tional
ommuni-
ation when the browser does not support WebSo
k-ets. Hobs is interfa
e
ompatible with the WebSo
ketinterfa
e des
ribed in [19℄, this provides for a meansof using Hobs as a drop-in repla
e in an appli
ationusing WebSo
kets to provide ba
kward
ompatible op-eration. And it is designed to be just that, a simpleimplementation of a WebSo
ket.Hobs uses two
on
urrent TCP
onne
tions to ob-tain bidire
tional message ex
hange, one
onne
tion forsending messages from
lient to server as des
ribed inse
tion 4.1.3 and another
onne
tion for server to
lientmessages as des
ribed in se
tion 4.1.2. Two
onne
-tions are ne
essary sin
e Hobs uses the Long Pollingte
hnique in order to be able to re
eive data. If oneonly
onne
tion was used then the send of a messagewould have to wait for the Long Poll to �nish andhereby adding a high amount of laten
y for sendingdata. Therefore two
onne
tions are used, one for
lientto server messages and another for server to
lient mes-sages.Where other
omet implementations/proto
ols en-
apsulate meta-data in the HTTP body and en
odingit in either JSON(Bayeux) or XML(Bosh), Hobs en
ap-sulate meta-data in the HTTP request-line and reserveuse of the HTTP body only for payloads. The naming
onvention used by Hobs is illustrated in �gure 7.

1 /<pr e f i x >/<msg_id>/<arg1>/<arg2 >/.../ <argN>Figure 7: Meta data path en
apsulation.Ea
h item of meta-data is therefore separated witha �/�. All Hobs meta-data has <pre�x> whi
h is usedused as a namespa
e-separator su
h that Hobs
an
o-exist with web servers and other uses of the HTTP pro-to
ol on the same host and port. <msg_id> identi�esthe type of messages
arried, valid message-identi�ersare �
reate� and �session�. The message-identi�er isfollowed by N arguments.
4.1.1 Session Creation1 GET /hobs/
 r e a t e /<rid>/<wait>/<ep_host>/<ep_port> HTTP/1 .1The Hobs meta-data for initialization
onsists of apre�x followed by the message-identi�er
reate indi-
ating session
reation and the arguments request_id,wait, endpoint_host, endpoint_port and an optionalmif
ho_id. An example of the session
reation re-quest/response is provided in appendix B.1.The session
reation argument request_id is an ar-bitrary integer whi
h will be in
remented for ea
h mes-sage send from Hobs, the request_id is meant to beused on the server-side as a way to order in
oming mes-sages to ensure
orre
t ordering. The wait argument isan integer larger than zero that informs the server-sidehow long it should wait in se
onds before timing outa Long Poll. endpoint_host, endpoint_port togetheridentify the address of the host whi
h the
lient wantsto
ommuni
ate with.The optional mif
ho_id
an be used to indi
atethat the endpoint address should be
onta
ted via an-other MIFCHO instan
e identi�ed by mif
ho_id. Thiswill establish a tunnel between the
urrent MIFCHOinstan
e and the MIFCHO instan
e identi�ed by mif-
ho_id.The meta-data of the session
reation request justdes
ribed is delivered to the MIFCHO instan
e en
ap-sulated in the PATH part of the request-line of a HTTPGET request as illustrated in �gure 8. When the MIF-CHO instan
e re
eives the
reation-request it will at-tempt to establish a so
ket to the endpoint spe
i�ed. Itwill upon su

ess return a HTTP Response with a ses-sion_id in the body. The session_id is a unique inte-ger generated by the MIFCHO instan
e whi
h identifythe session
reated.11

Figure 8: Hobs initialization.Hobs will on retrieval of the session_id initiate are
v_loop implementing a Long Poll whi
h is de-s
ribed in the following se
tion.4.1.2 Server to Client Messages1 GET /hobs/ s e s s i o n/<sid> HTTP/1 .1After the session
reation the server will send pay-loads to Hobs en
apsulated in the response to a GETrequest, Hobs provides meta-data in the HTTP GETrequests in the form a pre�x, the message-identi�er ses-sion and �nally a session_id retrieved during session
reation. An example is provided in the appendix se
-tion B.3.To ensure a
onstant stream of data from the server,Hobs sends the GET requests in a Long Polling loopas illustrated in �gure 9. When a payload is re
eivedHobs immediately exe
utes the re
v_loop fun
tionagain to retrieve further payloads. Additionally Hobsexe
utes the fun
tion bound to onmessage.Noti
e that the MIFCHO instan
e
an wait in twos
enarios, either waiting endpoint payloads or wait fora GET request in whi
h to send the payload. Whenwaiting for endpoint payloads MIFCHO needs to im-plement the Long Polling timeout but equally impor-tant is it for MIFCHO to support bu�ering of payloadswhen waiting for Hobs GET requests. Bu�ering shouldbe bound by an upper limit su
h data does not
log upat the intermediary.

Figure 9: Hobs re
eiving two payloads PL0 and PL1from endpoint to Hobs.

4.1.3 Client to Server Messages1 POST /hobs/ s e s s i o n/<sid>/<r id+1>/ HTTP/1 .12 Content−Length : <payload_length>34 <payload>Payloads send from
lient to server are en
apsu-lated in HTTP POST requests with Hobs meta data
onsisting of a pre�x, message-identi�er session, ses-sion_id/sid identifying the Hobs session and an in
re-mentation of the request_id/rid. A short example isgiven in the �gure above and a more elaborate exam-ple is provided in the appendix se
tion B.2.The handling of the HTTP en
apsulation is illus-trated in �gure 10 where two payloads PL0 and PL1and send from Hobs. When MIFCHO re
eives thePOST request it extra
ts the payload and forwards itto the endpoint. Noti
e that the HTTP response to theHTTP POST o

urs immediately and does not provideany information on the delivery of the payload to theendpoint. The HTTP Response is only an indi
ationof whether MIFCHO will eventually forward the pay-load and as the �gure shows then the a
tual forward
an o

ur immediately prior to the HTTP Response oflater after the HTTP Response has been sent.Hobs is limited to only use two underlying
onne
-tions, Hobs therefore
ounts the amount of outstand-ing POST requests, if a POST is
urrently ongoing thesend will store the payload in an output bu�er. Whenthe ongoing POST returns it will immediately POSTall payloads in the output bu�er.This behavior has the advantage that it lowers
om-muni
ation laten
y when the JavaS
ript appli
ationhas a high frequen
y of small payloads. This o

ursin VNC when the
lient must update the
ursor posi-tion on the server in form of a pointerEvent.

Figure 10: Hobs sending two payloads PL0 and PL1from Hobs to endpoint.
12

4.2 jsVNCjsVNC is organized into multiple layers as illustrated in�gure 11. The lower layers
onsists of an implementa-tion of the Hobs proto
ol as des
ribed in the previousse
tion. The logi
 required for VNC/RFB messagesare en
apsulated in its own layer and is built on top ofthe Hobs library and WebSo
kets to provide the bidi-re
tional
ommuni
ation primitive. It uses a simplemethod to
he
k whi
h
ommuni
ation method to in-stantiate by simply
he
king for availability whi
h isdone i JavaS
ript as illustrated in �gure 12.

Figure 11: Layered stru
ture of jsVNC.Many di�erent frameworks for aiding JavaS
riptappli
ation development exists to name a few GoogleWeb Toolkit (GWT), jQuery, Prototype et
. The lowerlayers of jsVNC are not
oupled to any frameworkssin
e it would greatly redu
e portability and inter-operation of jsVNC, It is only the top-level bindingof HTML elements to JavaS
ript events whi
h utilizea framework. This means that Hobs and Vn

an bereused in di�erent proje
ts and integrated with otherbrowser-based appli
ations without enfor
ing the use aany parti
ular framework.1 i f ("WebSo
ket" in window) {}2 else i f ("Hobs" in window) {}3 else return f a l s e ;Figure 12: Che
king for
apabilities in JavaS
ript.An overview of the
ode layout
an be inspe
tedin table 4, the list of essential
apabilities of an VNC-
lient whi
h was derived in se
tion 2.1 is reprodu
edhere with a des
ription of how the
apabilities areimplemented. A
omplete overview of the feature-
ompleteness of jsVNC is provided in table 3.De
ode the re
tangle-en
odings of the frameBu�er-Update messages.This task is handled by the pro
ess_bu�er in theVn
 layer. Based on the type of en
oding useddi�erent methods are exe
uted, for the RAWen
oding the fun
tion draw_re
tangle is used.Draw_re
tangle basi
ally de
odes the RAW en-
oding by transforming the BGR representationto RGB and at the same time
onverts the byte-data to a numeri
al number whi
h the
anvas el-ement
an understand.

Render the de
oded re
tangles on the lo
al displayand
opy an area of the frame-bu�er to di�erent
oordinates.This task is also handle by the draw_re
tanglemethod for RAW en
oding and for in
rementalframeBu�erUpdates. But the essential part isthat the frame-bu�er uses the
anvas tag to ren-der the frame-bu�er.Grab lo
al mouse input and transform them intopointerEvent messages.This task is handled by
at
hing all onmouse-move, onmousedown and onmouseup events andupdate a global representation of the state ofmouse, in
luding position on s
reen and the bit-mask of buttons pressed. This is done to providea data stru
ture whi
h
an be use to poll for the
urrent state of the mouse, this is needed to send
orre
t pointerEvents. When re
eiving onmouse-move events the
urrent state of the buttons areunknown if jsVNC in these situations send thein
orre
t bitmask then features su
h as drag-and-drop would not be possible.Grab lo
al keyboard and transform keystrokes tokeyEvent messages.The keyEvent message is easily mapped to theonkeyup/onkeydown events sin
e the keyEventmessage simply
onsists of a down �ag indi
at-ing whether the key was pressed or released andthe key itself. The keyEvent message is how-ever only partially implemented sin
e it requiresa manual mapping of an browser-spe
i�
 integer-values representing a key and the keysym thatthe VNC server will interpret. The overlappingset of
hara
ters are only the alphanumeri

har-a
ters in the ASCI
har-set.FrameBu�erS
heme Implement a sensible s
hemefor sending frameBu�erUpdateRequests.This tasks is implemented by the fbur_poll fun
-tion it uses a global FburPoll stru
ture withthe �elds frequen
y (int) and polling (bool).fbur_poll
alls itself re
ursively as long as Fbur-Poll.polling is true, ea
h re
ursive
all is delayedFburPoll.frequen
y se
onds by the use of the set-Timeout method.Only the �rst frameBu�erUpdate request is a fullrequest, every su

in
t request is in
remental.It was found that prepending a pointerEvent toea
h frameBu�erUpdate improved user-per
eivedperforman
e.User per
eived performan
e is di�
ult to measure butone fa
t is that users expe
t that intera
ting with asystem would result in a some sort of rea
ting within ashort period of time. If the too long time passed beforethe appli
ation responds with any type of feedba
k thebehavior is interpreted as an error by the user. WithRFB this requires that the polling
y
le mat
hes withthe exa
t time of when something
hanges on the serverdisplay.13

This is very hard to predi
t on the
lient side, ex-
ept for the
ase when the
lient does something that
ould lead to
hanges in the frame-bu�er, su
h as mov-ing the mouse over an graphi
al element with hoveringe�e
t.To a
hieve good user-per
eived experien
e this
ould be taken advantage of su
h that ea
h point-erEvent generated by mouse movement is send togetherwith a frameBu�erUpdateRequest.This might seem like an ex
essive amount of up-date requests and one
on
ern is that frameBu�erUp-dateRequests are 10bytes in size and pointerEvent areonly 6bytes in size. Using this te
hnique would indi-re
tly in
rease the message-size of ea
h pointerEventwith ~166 per
ent.However the Hobs En
apsulation requires about513bytes in HTTP Request-line and headers, the a
-tual message-size in
rease when bundling pointerEventand frameBu�erUpdateRequest is therefore negle
t-able due to the proto
ol overhead of Hobs.Using Hobs and WebSo
kets in
reases the lengthsof messages due to payload en
apsulation. Payloaden
apsulation is required in order to safely transfer bi-nary data over XHR requests in environments wherethe browser does not allow the
lient to the
hangeof the HTTP-headers and therefore
annot
hange themime-type to appli
ation/raw. WebSo
kets also needto perform payload en
apsulation, the proto
ol spe
i�-
ation des
ribes a binary framing type, the WebSo
ketAPI however does not provide for at any means to en-able the use of the binary framing.Therefore both WebSo
kets and Hobs use a base64en
oding of payloads to ensure safe transfer. Base64en
oding indu
es an overhead on the payloads sin
e it

transforms three bytes into four and if the message isnot a multiple of 3 padding must be used.It is not possible to a

urately de�ne the overheadof Hobs sin
e the HTTP request-line and headers dif-ferentiate depending on the browser and theCHAP. Feature Status6.1.1 Handshake - Proto
ol Version OK6.1.2 Handshake - Se
urity OK6.1.3 Handshake - Se
urity Result OK6.2.1 Se
urity Types - None OK6.2.2 Se
urity Types - VNC Auth. -6.3.1 ClientInit OK6.3.2 ServerInit OK6.4.1 SetPixelFormat OK6.4.2 SetEn
odings OK6.4.3 FrameBu�erUpdateRequest OK6.4.4 KeyEvent PARTIAL6.4.5 PointerEvent OK6.4.6 ClientCutText -6.5.1 FrameBu�erUpdate OK6.5.2 SetColourMapEntries OK6.5.3 Bell OK6.5.4 ServerCutText OK6.6.1 En
odings - RAW OK6.6.2 En
odings - CopyRe
t OK6.6.3 En
odings - RRE -6.6.4 En
odings - Hextile -6.6.5 En
odings - ZRLE -6.7.1 PseudoEn
odingCursor PARTIAL6.7.2 PseudoEn
odingsDesktopSize OKTable 3: Feature-
ompleteness of jsVNC.Component Path Des
riptionVn
 js/vn
.js Implementation of RFB messagehandling, sending and GUI bindingsHobs js/hobs.js Implementation of bidire
tional Hobs proto
ol.jQuery js/jquery.js Framework for aiding the graphi
al user interfa
e.GUI vn
.html HTML and JavaS
ript for instantiating and binding Vn
 to Html elements.CSS
ss/*.
ss Stylesheets for HTML presentation.Images images/*.png Images used in the graphi
al user-interfa
e.Table 4: Organization of jsVNC
ode.4.3 MIFCHOThe idea of MIFCHO is to provide middleware for over-
oming the
lient-server
ommuni
ation establishmentissues and proto
ol translation from Hobs/WebSo
k-ets to raw so
kets, enabling browser-based bidire
tional
ommuni
ation with endpoints being available on theInternet or on private networks
onne
ted to the Inter-net.The following is a des
ription of the abstra
t orga-nization of MIFCHO after-whi
h a se
tion is provideddes
ribing the MIFCHO proto
ol whi
h enables daisy-
haining of MIFCHO instan
es whi
h is the key enablerto solving the
onne
tivity issues. Lastly in se
tion 4.5a brief des
ription on how to use MIFCHO is provided.

MIFCHO is written entirely in Python. Python hasmany frameworks to a

elerate development and easethe maintenan
e of networked appli
ations. The third-party Twisted framework is a popular
hoi
e and sois the built-in So
ketServer framework. In the earlystages of development both frameworks were experi-mented with to see how they
ould assist the develop-ment. It was found that both provide too many layersof indire
tion, MIFCHO is generally
on
erned withproviding a means for managing outgoing
onne
tionsand to bind on so
kets and handle in
oming
onne
-tions to so
kets. Instead of using one of these existingframeworks MIFCHO is implemented as a minimalis-ti
 and spe
ialized framework based on the experien
e14

gained from using Twisted and So
ketServer. MIF-CHO tries not be a framework useful for any type of ofnetwork-appli
ation su
h as Twisted and So
ketServer.It is instead simply a de
oupling of the issues of han-dling (binding, listening, a

epting and tearing down)so
kets/
onne
tions, and to obtain
on
urrent pro
ess- ing of multiple so
kets/
onne
tions by using threads.This is done su
h that implementing the appli
ation-spe
i�
 logi
, su
h as writing WebSo
ket to so
kettranslation
an fo
us on just that without being dis-tra
ted about implementation issues regarding
on
ur-ren
y,
onne
tion binding/listening and shutdown.

Figure 13: Abstra
t organization of MIFCHO.The framework part or non-appli
ation-spe
i�
part of MIFCHO
onsists of the
lasses Conne
tion-Manager, Conne
tor, A

eptor, Piper, Conne
tion.The organization of MIFCHO is illustrated in �gure13 The Conne
tionManager is a
entral entity thatprovides helper fun
tionality for establishing outgoing
onne
tions via the
onne
t() method and to bind/lis-ten/a

ept in
oming
onne
tions via the so
ket_bla()method. The Conne
tionManager holds referen
esto all bound and opened
onne
tions and providesa means for gra
efully tearing down
onne
tions viathe teardown() method. The Conne
tionManager alsomaintain lists of Peers and Tunnels. Peers are otherMIFCHO instan
es whi
h the Conne
tionManager
anuse to
reate
onne
tions through. Tunnels are lists of
onne
tion pairs (a, b) where the output of
onne
tiona is
opied to the input of
onne
tion b and the outputof
onne
tion b is
opied to the input of
onne
tion a.A

eptors
ontain appli
ation-spe
i�
 logi
. An a
-
eptor is based on the well-known design pattern of aworker-pool. Work in the
ontext of MIFCHO
onsistsof a 3-tuple/triplet on the form:

1 (
onn , address , aux)Where
onn and address are the result of aso
ket.a

ept()
all with the addition that the
onnis a so
ket en
apsulated in a Conne
tion obje
t. auxprovides for auxiliary data.A skeleton example of implementing an a

eptor isprovided here:1
 l a s s MyA

eptor (A

eptor) :2 de f work (s e l f , job) :3 (
onn , address , aux) = job4 . . .For the reader familiar with the So
ketServerframework distributed with Python then A

eptors aresimilar to RequestHandlers. Spe
i�
ally the work()method of an A

eptor is equivalent to the handle()method of a RequestHandler.There is however substantial di�eren
e in the life-
y
le of RequestHandler and A

eptor obje
ts and intheir
oupling to the sour
e produ
ing the
onne
tionwhi
h they �handle� or �work �.Dispat
hers are the glue between the Conne
tion-Manager and the A

eptors. Dispat
hers take ingoing15

onne
tions as input and
ontain the logi
 to route theingoing
onne
tion to the appropriate A

eptor and to
reate the work triplet des
ribed earlier. The aux partof the work-triplet
an be used to provide additionaldata to the A

eptor. MIFCHO has two dispat
hers(TCPDispat
her and HTTPDispat
her) implementingdi�erent dispat
hing strategies, most interesting is theHttpDispat
her. It dispat
hes request to di�erent A
-
eptors based on the request-line of an ingoing
onne
-tion
ontaining a HTTP Request. This strategy makesit possible in a simple way to have multiple di�erentuses of the HTTP proto
ol on the same (host, port)pair.MIFCHO has several A

eptors the Hobs and Web-So
ket A

eptors performs proto
ol translation fromHobs/WebSo
ket to raw so
kets. A

eptors howeverare not limited to doing proto
ol-translation, MIFCHOhas three other A

eptors: Peer, Stati
Web and Man-agement. Peer a

eptor implements part of the proto-
ol des
ribed in the following se
tion, Stati
Web imple-ments a simpleWebServer serving stati
 �les, Manage-ment provides performan
e data su
h as CPU utiliza-tion of the MIFCHO instan
e. The Stati
Web A

eptorprovides a
onvenient way to distribute the jsVNC web-appli
ation while maintaining same-origin
omplian
e.These A

eptors are all based on the HTTP pro-to
ol, two other a

eptors exists with the purpose ofproviding simple TCP forwarding and Tunneling.The �nal entity in MIFCHO are the Conne
tors, ais the reverse of an A

eptor. Instead of waiting forin
oming
onne
tions the Conne
tor itself establishedoutgoing Conne
tions. MIFCHO
ontains one Conne
-tor, the PeerConne
tor implements the other part ofthe MIFCHO proto
ol.4.4 MIFCHO Proto
olThe primary purpose of the MIFCHO proto
ol is toenable distin
t MIFCHO instan
es
ommuni
ate andestablish
onne
tions via ea
h other.MIFCHO is a simple proto
ol with three messages:handshake, tunnel-setup request and tunnel-setup re-sponse. The MIFCHO proto
ol messages are en
apsu-lated in HTTP in an RPC-like fashion with meta-dataprovided via the PATH of the HTTP Request-line. Theen
apsulation of meta-data in th PATH was also
ho-sen in the Hobs proto
ol, this approa
h is attra
tivewhen the amount of arguments are few and providesa simple API when the messages a similar to remotepro
edure
alls. The pre�x
ould be
onsidered an ob-je
t instan
e referen
e, hello and tunnel method namesand everything else �/� separated arguments.In the following se
tions the MIFCHO messages aredes
ribed and to names MFC-0 and MFC-1 are usedto identify two MIFCHO instan
es.4.4.1 Handshake1 POST /peer / h e l l o /<peer_id> HTTP/1 .1The handshake as illustrated in �gure 14 is initiatedby the entity establishing the
onne
tion to the other

party. In the illustration this is MFC-1
onne
ting toMFC-0. MFC-1 identi�es itself by sending the hello
ommand
ontaining MFC-1s peer_id. The peer_id isnot a network address but a unique identi�
ation ofMFC-1.

Figure 14: MIFCHO handshake.
When MFC-0 re
eives the hello message it stores areferen
e to the underlying so
ket of the HTTP POSTrequest, mapped to by the peer_id and sends a HTTP200 OK to MFC-1. The underlying so
ket is
alled the
ontrol
onne
tion of MFC-1. The
ontrol
onne
tionis maintained by MFC-1 meaning that if it should bedis
onne
ted it will attempt to re
onne
t. After MFC-1 has re
eived the 200 OK response to it's handshakemethod it starts to listen on the
ontrol
onne
tion fortunnel setup requests.MIFCHO then swit
hes dire
tion of HTTP re-quests, su
h behavior is spe
i�ed under the ReverseHTTP proto
ol spe
i�
ation.4.4.2 Tunnel Setup Request and Response

The meta-data for a tunnel setup request
onsists ofpre�x, �xed message-identi�er string �tunnel�, followedby a tunnel_id, endpoint_host and endpoint_port.The meta-data for tunnel setup response
onsists ofa pre�x and a �xed message-identi�er string �tunnel�.16

Figure 15: MIFCHO tunnel setup request and re-sponse.As des
ribed in the previous se
tion then MFC-1 listens on its
ontrol
onne
tion for setup requests.When MFC-0 needs to tunnel data through MFC-0 itlooks up the
ontrol
onne
tion of MFC-1 and sendsthe setup request, MFC-1 responds immediately indi-
ating not that the status of
onta
ting the endpointbut the status of whether the MFC-1 will attempt to
onta
t the endpoint.MFC-0 then attempts to
onta
t the endpoint spe
-i�ed in the meta-data, after-wards it establishes a newso
ket with MFC-0 and sends a tunnel setup responseon the new so
ket. When MFC-0 has veri�ed that thetunnel_id provided is valid it responds 200 OK.MFC-0 and MFC-1 hereafter tunnels all payloadson these two newly
reated so
kets.4.5 Using MIFCHODeploying jsVNC and MIFCHO
an be done by:1
d ~2 mkdir deploy3 svn export http : //mif
ho . goog l e
ode .
om/svn/trunk/ mif
ho4 svn export http : // j svn
 . goog l e
ode .
om/svn/trunk/ sr
 j svn
5
d mif
ho6 # ad jus t the
 on f i gu r a t i on f i l e7 python bin /mif
ho . py −
 e t
 /web_gw .
onf − l var/ log /web_wg. log −v ERRORFigure 16: Starting a MIFCHO instan
e with
on�g-uration in web_gw.
fg, logging to web_gw.log at log-level ERROR.
17

5 ExperimentsThe experiments should reveal the di�eren
e in re-sour
e utilization and
onsumption between using atraditional VNC
lient and the browser-based VNC
lient jsVNC.Two experiments were designed to measure theCPU utilization and memory
onsumption on the de-vi
e running the VNC
lient and another experimentto see the e�e
t of the proto
ol overhead as des
ribedpreviously. To perform these two experiments tools areneeded to be able to: reprodu
ing a desktop intera
-tion, measure CPU/memory utilization and measurethe amount of bytes transferred.Two tools (re
ord.py and play.py) were developedfor reprodu
ing the desktop intera
tion. re
ord.pydoes as the suggest perform a re
ording user-inputevents from the X window system su
h as mouse-keydown/keyup/move and keyboard keydown/keyup.re
ord.py is based on an example appli
ation from theXlib python bindings and enhan
ed with fun
tionalityto store all events to �le with a timestamp su
h thatevents
an be replayed.The replay of events is performed by play.py and inaddition to exe
uting events in a timely manner it alsosamples CPU utilization and memory
onsumption ofa target pro
ess.It was established in the analysis that a VNC
lientusing only RAW, CopyRe
t and pseudo-en
oding is notable to playba
k video in a de
ent quality without stut-ter. The desktop intera
tion re
ord with re
ord.py wastherefore a utilization of a desktop where the intera
-tions
omprised of a set of operations
ommon to theuse of a desktop environment. This in
luded movingthe mouse over items to trigger hover-e�e
ts,
li
kingof pop-up menus, writing text in a text-editor, draw asimple drawing in a drawing program, maximize andminimize windows to trigger the transfer of larger re
t-angles than those transferred with the other uses andlastly drag windows around to provoke the use of theCopyRe
t en
oding.A s
reen-re
ording of the this intera
tion is pro-vided in the appendix se
tion C, links to an onlineversion of this video demonstration is also available inthe appendix.For the �rst experiment the desktop intera
tionwas played ba
k with play.py using the followingVNC
lients: TightVNCs vn
viewer, jsVNC in GoogleChrome using WebSo
kets, jsVNC in Google Chromeusing Hobs and �nally jsVNC in Firefox using Hobs.For the se
ond experiment the previously des
ribeddesktop intera
tion is played ba
k with play.py butadditionally used Wireshark to re
ord the message-ex
hange between the VNC
lient and MIFCHO.The VNC server was in both
ases running on ama
hine with Mi
rosoft Windows XP and the refer-en
e VNC-server implementation VNC Free Edition4.1 from RealVNC. The desktop was using a resolu-tion 1280x712 with 32bit
olors.

5.1 ResultsIn �gure 17 the CPU utilization is plotted as a fun
tionof time, the graph shows a peak for all
lients in thebeginning of the desktop intera
tion this is due to theserver sending the entire frame-bu�er to the
lient re-quiring the most amount of work during this period oftime. The graph of the browser-based
lients stabilizesaround 30% CPU utilization within about 5 se
onds.The graph of the native VNC-
lient stabilizes around1% CPU utilization within about one se
ond.

Figure 17: CPU utilization in per
ent of jsVNC andvn
viewer.The graph quite
learly shows that the browser-based
lients have a signi�
antly higher CPU-utilization with a peak of 112% where the native VNC-
lient never ex
eeds 6% utilization. It is interesting toobserve that there does not seem to be any
lear ad-vantage in terms of CPU-utilization in using browser-supported WebSo
kets.To un
over what the sour
e of this signi�
antlyhigher CPU-utilization is a CPU-pro�ling was run onjsVNC, revealing that 45% of the time was spendof base64 de
oding. This explains both why CPU-utilization is so mu
h higher than the native VNC
lient, sin
e the native
lient does not need to do anybase64 en
oding and it explains why there is not any-thing to gain with the browser-supported WebSo
ketssin
e the dominant operation of base64 de
oding is re-quired for both Hobs and WebSo
kets.

Figure 18: Memory
onsumption of jsVNC andTightVNCs vn
viewer.The memory
onsumption of jsVNC in GoogleChrome and Firefox and TightVNCs vn
viewer is plot-ted as a fun
tion of time in �gure 18 . The graphshows that the memory
onsumption Google-Chrome18

qui
kly
onsumes about 3.5MB whi
h
orrespondssomewhat to the size of the frame-bu�er = 1280*712*4/ (1024*1024) ~= 3.47MB. The graph rises at the endof intera
tion whi
h
omplies with the maximizationand minimization performed whi
h leads to somewhatlarger framebu�erUpdates. It is mildly surprising tosee that native vn
viewer uses less than a MB of mem-ory. The graph again
learly shows that the browser-based VNC
lient has a signi�
antly higher resour
e
onsumption than the native
lient.The amount of bytes transferred in absolute valuesand relative values to the native
lient is provided intable 5.Bytes Send Re
eived TotalVn
viewer 706312 60903223 61609535jsVNC WS 777814 74756330 75534144jsVNC WS % 10.1% 22.7% 22.6%jsVNC Hobs 4109996 81286663 85396659jsVNC Hobs % 481.8% 33.4% 38.5%Table 5: Bytes transferred in absolute values and per-
entile in
rease in relation to the native
lient.The graph shows the total amount of bytes trans-ferred for jsVNC using WebSo
kets, jsVNC using Hobsand for TightVNCs native VNC-
lient. The graphshows that Hobs has a higher overhead than WebSo
k-ets. This is also to be expe
ted sin
e Hobs en
apsulatespayloads in HTTP request/response pairs and Web-So
kets only use a
onstant four bytes for the begin-ning/end of message indi
ators.The data a
lient re
eives with RFB mostly
on-tains large messages where the data a
lient sendswith RFB is mostly small messages. Sin
e a
lientre
eives frameBu�erUpdates and sends frameBu�erRe-quests and pointerEvent/keyEvents. The table showsthat the overhead is most signi�
ant when sendingpa
kages due to the fa
t that the sending is
omprisedof many small messages.

19

6 Con
lusionIn this paper a
ase study of engineering
loud-basednetworking appli
ations has been
ondu
ted. Cloud
omputing provides a means for seamlessly making
omputing resour
es available as a servi
e, on-demand,everywhere. The work in this paper studies the engi-neering
hallenges of making a VNC
lient available asa servi
e, on-demand in an Internet-browser.A VNC
lient has been engineered and experimentsshow promising results that it is feasible to engineernetwork appli
ations in the browser whi
h require highthroughput and low laten
y. Experiments however alsoshow that the pri
e of
loud-based VNC
lient is paidwith signi�
antly higher CPU utilization, memory
on-sumption and bandwidth
onsumption than a tradi-tional VNC
lient.The work in this paper also analyze the
hallengesof enabling so
ket-like
ommuni
ation for the browserand a middleware platform for aiding
onne
tion-establishment, enabling proto
ol translation and per-forming browser-based appli
ation deployment hasbeen implemented.It was also found that one of the
ontributors tosigni�
ant higher CPU-utilization of the browser-based

VNC
lient is base64 de
oding of data. This dis
overystressed the importan
e for futureWebSo
ket APIs andproto
ols to support binary framing to safely and ef-�
iently transport binary data in browser-based appli-
ations.6.1 Future WorkExperiment with implementing more en
oding-s
hemes based on the
ommunity maintained RFBspe
i�
ation. The TIGHT en
oding-s
heme is basedon JPEG
ompression this is interesting sin
e Internet-browsers are well-equipped for rendering JPEG images.It
ould be interesting to evaluate the di�eren
e in per-forman
e of jsVNC with TIGHT en
oding vs the RAWmanually handling de
oding.It was observed during the experiments that a largepart of the CPU-utilization was
aused by base64 en-
oding and de
oding of messages, it
ould be interest-ing to �nd a way to enable Hobs to transfer binary datain a safe way without requiring the base64 en
oding.Another observation was made that MIFCHO
ouldbe used as an o�oad proxy for the CPU-intensive tasksof JPEG en
oding frameBu�erUpdates.

20

Referen
es[1℄ FreeNX. http://freenx.berlios.de/, 2010.[2℄ P. S. Bryan Ford and D. Kegel. Peer-to-peer
ommuni
ation a
ross network address translators. InPro
eedings of the annual
onferen
e on USENIX Annual Te
hni
al Conferen
e, ATEC '05, pages 13�13,Berkeley, CA, USA, 2005. USENIX Asso
iation.[3℄
arde.
arde - Pure Web Standards based Remote Desktop. http://
ode.google.
om/p/
arde/, 2010.[4℄ M. Fu

i. FlashLight-VNC. http://www.wizhelp.
om/�ashlight-vn
/, 2010.[5℄ Google. ExplorerCanvas. http://ex
anvas.sour
eforge.net/, 2010.[6℄ Google In
. Google Se
ure Data Conne
tor. http://
ode.google.
om/se
uredata
onne
tor/, 2010.[7℄ P. S.-A. J. M. Ian Paterson, Dave Smith. XEP-0124: Bidire
tional-streams Over Syn
hronous HTTP(BOSH). XEP-0124 (Informational), 2009.[8℄ jsso
kets. jsso
kets. http://
ode.google.
om/p/jsso
kets/, 2010.[9℄ Kaazing. Kaazing Gateway. http://www.kaazing.org/
on�uen
e/display/KAAZING/Home, 2010.[10℄ Mi
rosoft. Windows Remote Desktop. http://support.mi
rosoft.
om/default.aspx?s
id=kb;EN-US;q186607, 2010.[11℄ NoMa
hine. NX. http://www.noma
hine.
om/produ
ts.php, 2010.[12℄ Orbited. Orbited. http://orbited.org/, 2010.[13℄ A. Russell. Comet Low Laten
y Data for the Browser. http://alex.dojotoolkit.org/2006/03/
omet-low-laten
y-data-for-the-browser/, 2010.[14℄ TigerVNC. TigerVNC. http://tigervn
.org/, 2010.[15℄ TightVNC. TightVNC. http://www.tightvn
.
om/, 2010.[16℄ TightVNC. TightVNC Java Viewer. http://www.tightvn
.
om/ssh-java-vn
-viewer.php, 2010.[17℄ R. L. Tristan Ri
hardson. The RFB Proto
ol. www.realvn
.
om/do
s/rfbproto.pdf, 2009.[18℄ UltraVNC. UltraVNC. http://www.uvn
.
om/, 2010.[19℄ W3C. The WebSo
ket API. http://dev.w3.org/html5/webso
kets/, 2010.[20℄ W3C. The WebSo
ket Proto
ol Spe
i�
ation - Latest. http://www.whatwg.org/spe
s/web-so
ket-proto
ol/, 2010.[21℄ S. G. Ware. Gua
amole. http://sour
eforge.net/proje
ts/gua
amole/, May 2010.[22℄ S. G. Ware. Java So
ket Bridge. http://stephengware.
om/proje
ts/javaso
ketbridge/, 2010.[23℄ Wikipedia. Cross Site Request Forgery. http://en.wikipedia.org/wiki/Cross-site_request_forgery, 2010.[24℄ Wikipedia. Cross Site S
ripting. http://en.wikipedia.org/wiki/Cross-site_s
ripting, 2010.

21

A MIFCHO Con�guration Example1 [Hobs Gateway ℄2 u r l=http : // t i l e −0−0. l o
 a l :8000/ hobs3 i n s t an
 e s =154
omponent=HobsA

eptor56 [Webso
ket Gateway ℄7 u r l=http : // t i l e −0−0. l o
 a l :8000/ wso
ket8 i n s t an
 e s =159
omponent=Webso
ketA

eptor1011 [Peer I n t e r f a
 e ℄12 u r l=http : // t i l e −0−0. l o
 a l :8000/ peer13 i n s t an
 e s =1514
omponent=PeerA

eptor1516 [Management I n t e r f a
 e ℄17 u r l=http : // t i l e −0−0. l o
 a l :8000/ admin18 i n s t an
 e s =1519
omponent=ManagementA

eptor2021 [jsVNC App Deploy ℄22 u r l=http : // t i l e −0−0. l o
 a l :8000/ j svn
23 i n s t an
 e s =1524
omponent=Stati
WebA

eptor25 path_pref ix =. ./ j svn
 / s r
2627 [TCP Forward ℄28 u r l=tunnel : // t i l e −0−0. l o
 a l :5900/ l o
 a l h o s t /5900029 i n s t an
 e s =1530
omponent=TCPForwardA

eptor3132 [TCP Tunnel v ia Peer ℄33 u r l=tunnel : // t i l e −0−0. l o
 a l :8001/1234/ l o
 a l h o s t /5900034 i n s t an
 e s =1535
omponent=TCPTunA

eptor Figure 19: Example MIFCHO
on�guration �le.B Message SamplesB.1 Hobs Session CreationSession
reation request of 443 bytes.1 GET /hobs/
 r e a t e /3527051141/50/ jsvn
 −01/59000 HTTP/1 .12 Host : t i l e −0−0:80003 User−Agent : Moz i l l a /5 .0 (X11 ; U; Linux x86_64 ; en−US; rv : 1 . 9 . 2 . 5 pre) Ge
ko/20100528 Ubuntu/10.04 (l u
 i d) Namoroka / 3 . 6 . 5 pre4 A

ept : t ex t /html , app l i
 a t i on /xhtml+xml , app l i
 a t i on /xml ; q=0.9 ,∗/∗ ; q=0.85 A

ept−Language : en−us , en ; q=0.56 A

ept−En
oding : gz ip , d e f l a t e7 A

ept−Charset : ISO−8859−1, u t f −8;q=0.7 ,∗ ; q=0.78 Keep−Al ive : 1159 Conne
tion : keep−a l i v e10 Origin : n u l lSession
reation response of 110 bytes.1 HTTP/1 .1 200 OK2 Content−Length : 393 A

ess−Control−Allow−Orig in : ∗45 198118126074926987294597228863060066306B.2 Hobs Sending MessageSending a pointerEvent and frameBu�erUpdateRequest, total message-length: 595 bytes.1 POST /hobs/ s e s s i o n /198118126074926987294597228863060066306/3527051188 HTTP/1 .12 Host : t i l e −0−0:8000 22

3 User−Agent : Moz i l l a /5 .0 (X11 ; U; Linux x86_64 ; en−US; rv : 1 . 9 . 2 . 5 pre) Ge
ko/20100528 Ubuntu/10.04 (l u
 i d) Namoroka / 3 . 6 . 5 pre4 A

ept : t ex t /html , app l i
 a t i on /xhtml+xml , app l i
 a t i on /xml ; q=0.9 ,∗/∗ ; q=0.85 A

ept−Language : en−us , en ; q=0.56 A

ept−En
oding : gz ip , d e f l a t e7 A

ept−Charset : ISO−8859−1, u t f −8;q=0.7 ,∗ ; q=0.78 Keep−Al ive : 1159 Conne
tion : keep−a l i v e10 Content−Type : t e x t / p l a i n ;
harse t=UTF−811 Content−Length : 2412 Origin : n u l l13 Pragma : no−
a
he14 Ca
he−Contro l : no−
a
he1516 BQAAAAAAAwEAAAAABQACyA==Session usage response of 70bytes:1 HTTP/1 .1 200 OK2 Content−Length : 03 A

ess−Control−Allow−Orig in : ∗B.3 Hobs Re
eiving MessageRequest1 GET /hobs/ s e s s i o n /198118126074926987294597228863060066306 HTTP/1 .12 Host : t i l e −0−0:80003 User−Agent : Moz i l l a /5 .0 (X11 ; U; Linux x86_64 ; en−US; rv : 1 . 9 . 2 . 5 pre) Ge
ko/20100528 Ubuntu/10.04 (l u
 i d) Namoroka / 3 . 6 . 5 pre4 A

ept : t ex t /html , app l i
 a t i on /xhtml+xml , app l i
 a t i on /xml ; q=0.9 ,∗/∗ ; q=0.85 A

ept−Language : en−us , en ; q=0.56 A

ept−En
oding : gz ip , d e f l a t e7 A

ept−Charset : ISO−8859−1, u t f −8;q=0.7 ,∗ ; q=0.78 Keep−Al ive : 1159 Conne
tion : keep−a l i v e10 Origin : n u l lResponse1 HTTP/1 .1 200 OK2 Content−Length : 3072003 Content−Type : t ext / p l a i n4 A

ess−Control−Allow−Orig in : ∗56 <par t i a l −f r amebuf f e rupdate re sponse−base64−en
oded>B.4 WebSo
ket InitializationHTTP
ompatible setup request.1 GET /wso
ket /1234/ jsvn
 −01/59000 HTTP/1 .12 Upgrade : WebSo
ket3 Conne
tion : Upgrade4 Host : t i l e −0−0:80005 Orig in : nu l lResponse:1 HTTP/1 .1 101 Web So
ket Proto
o l Handshake2 Upgrade : WebSo
ket3 Conne
tion : Upgrade4 WebSo
ket−Orig in : nu l l5 WebSo
ket−Lo
at ion : ws : // t i l e −0−0:8000/ wso
ket /1234/ jsvn
 −01/590006 WebSo
ket−Proto
o l : sampleB.5 WebSo
ket SendSending a pointerEvent and frameBu�erUpdateRequest, total message-length: 26 bytes.1 00BQAAAAAAAwAAAAAABQACyA==FF
23

C Physi
al MediumThe sour
e-
ode for jsVNC and MIFCHO are provided on the en
losed physi
al medium. The
ontent of themedium is organized as des
ribed in table 6.Path Des
ription/jsvn
/* All sour
e
ode related to the jsVNC browser-based appli
ation./mif
ho/* All sour
e
ode related to the MIFCHO middleware./demo/jsvn
_
hrome.avi Video demonstration of jsVNC in H.264 en
oding./demo/jsvn
_
hrome.ogv Video demonstration of jsVNC in OGV format./demo/s
reenshots/*.png S
reen-shots of jsVNC./report.pdf A PDF-version of this do
ument.Table 6: Organization of physi
al medium.C.1 OnlineThe resour
es des
ribed above are also available online via Googles proje
t-hosting servi
e and the video isavailable on Youtube. Links are provided in table 7.URLMIFCHO http://
ode.google.
om/p/mif
ho/hostedjsVNC http://
ode.google.
om/p/jsvn
/Video-Demo http://www.youtube.
om/wat
h?v=To
E4MzsD-
Table 7: Online availability of ressour
es.

24

	Introduction
	Terminology
	Related Work

	Analysis
	VNC Application
	Infrastructural Challenges and Browser Limitations
	Techniques
	Initiate Retrieval
	Server Push

	Technique Implementations
	Bayeux
	BOSH

	Wire Protocols
	WebSockets

	Security Concerns
	Frame-buffer Rendering
	Conclusion

	Architecture & Design
	Implementation
	Hobs
	Session Creation
	Server to Client Messages
	Client to Server Messages

	jsVNC
	MIFCHO
	MIFCHO Protocol
	Handshake
	Tunnel Setup Request and Response

	Using MIFCHO

	Experiments
	Results

	Conclusion
	Future Work

	References
	MIFCHO Configuration Example
	Message Samples
	Hobs Session Creation
	Hobs Sending Message
	Hobs Receiving Message
	WebSocket Initialization
	WebSocket Send

	Physical Medium
	Online

